Advertisement

Applied Physics B

, Volume 114, Issue 1–2, pp 303–306 | Cite as

Single calcium-40 ion as quantum memory for photon polarization: a case study

  • Philipp Müller
  • Jürgen Eschner
Article

Abstract

We present several schemes for heralded storage of polarization states of single photons in single ions, using the 40Ca+ ion and photons at 854 nm wavelength as specific example. We compare the efficiencies of the schemes and the requirements for their implementation with respect to the preparation of the initial state of the ion, the absorption process and its analysis. These schemes may be used to create and herald entanglement of two distant ions through entanglement swapping; they are easily adapted to other atomic systems and wavelengths.

Keywords

Polarization State Quantum Memory Zeeman Sublevel Larmor Precession Entangle Photon Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Nicolas Sangouard for motivating discussions. This work was partially supported by the BMBF (Verbundprojekt QuOReP, CHIST-ERA project QScale), the German Scholars Organization/Alfred Krupp von Bohlen und Halbach-Stiftung, the EU (AQUTE Integrating Project), and the ESF (IOTA COST Action).

References

  1. 1.
    J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    B.B. Blinov, D.L. Moehring, L.-M. Duan, C. Monroe, Nature 428, 153 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    W. Rosenfeld, S. Berner, J. Volz, M. Weber, H. Weinfurter, Phys. Rev. Lett. 98, 050504 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    N. Akerman, S. Kotler, Y. Glickman, R. Ozeri, Phys. Rev. Lett. 109, 103601 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S. Lloyd, M.S. Shahriar, J.H. Shapiro, Phys. Rev. Lett. 87, 167903 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    H. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, G. Rempe, Nature 473, 190 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, Nature 484, 195 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M. Schug, J. Huwer, C. Kurz, P. Müller, J. Eschner, Phys. Rev. Lett. 110, 213603 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    C. Kurz, J. Huwer, M. Schug, P. Müller, J. Eschner, New J. Phys. 15, 055005 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, J. Eschner, New J. Phys. 15, 025033 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, J. Eschner, Nature Phys. 7, 17 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S.A. Schulz, U.G. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    P. Staanum, I.S. Jensen, R.G. Martinussen, D. Voigt, M. Drewsen, Phys. Rev. A 69, 032503 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Nature 431, 1075 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    M. Knoop, C. Champenois, G. Hagel, M. Houssin, C. Lisowski, M. Vedel, F. Vedel, Eur. Phys. J. D 29, 163 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    H.C. Nägerl, C. Roos, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 61, 023405 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Here we use a suitably abbreviated notation for the CGCs. Various “standard” notations are found in the literature, to which our definition is related through \(C_{m_{\rm D}, m_{854}, m_{\rm P}} = C_{m_{\rm D}, m_{854}, m_{\rm P}}^{5/2, 1, 3/2} = \langle 5/2, m_{\rm D}; 1, m_{854} | 5/2, 1, 3/2, m_{\rm P}\), and likewise for \(C_{m_{\rm P}, m_{393}, m_{\rm S}}\) Google Scholar
  18. 18.
    E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Nature 466, 730 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Creation of a superposition state requires at least two optical qubit rotations, which may be performed with individual infidelities below 1%; see, for example, F. Schmidt-Kaler, S. Gulde, M. Riebe, T. Deuschle, A. Kreuter, G. Lancaster, C. Becher, J. Eschner, H. Häffner, R. Blatt, J. Phys. B 36, 623 (2003)Google Scholar
  20. 20.
    T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    N. Sangouard, J.-D. Bancal, P. Müller, J. Ghosh, J. Eschner, New J. Phys. 15, 085004 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ExperimentalphysikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations