Applied Physics B

, Volume 113, Issue 1, pp 93–97 | Cite as

Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser

  • Joseph D. Miller
  • James B. Michael
  • Mikhail N. Slipchenko
  • Sukesh Roy
  • Terrence R. Meyer
  • James R. Gord
Rapid Communication


Simultaneous high-speed quantitative imaging of mixture fraction and velocity is demonstrated using the fourth- and second-harmonic outputs, respectively, of a burst-mode Nd:YAG laser. A tenfold increase in the record length and 16-fold increase in per-pulse energy are achieved compared with previous measurements of mixture fraction using burst-mode and continuously pulsed diode-pumped solid-state lasers, respectively. The high output energy is used for quantitative, high-speed mixture-fraction imaging with acetone planar laser-induced fluorescence, which also enables simultaneous particle-based velocimetry without interference from particle scattering. A semiquantitative model is used to determine the limitations on fourth-harmonic output energy due to the effects of transient absorption and thermal phase mismatch over a range of repetition rates. Data are presented for mixing within a turbulent jet (Reynolds number of 15,000) and are validated by comparisons with known turbulent mixing laws and previously published data.


Mixture Fraction Transient Absorption High Repetition Rate Phase Mismatch DPSS Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding was provided, in part, by the Air Force Office of Scientific Research (Dr. Chiping Li, Program Manager) and the Air Force Research Laboratory under contract No. FA8650-12-C-2200. The authors also thank D. Diaz, M. Johnson, and A. Barrow of Iowa State University. J. Miller is currently a National Research Council Research Associate at the Air Force Research Laboratory, Aerospace Systems Directorate. This manuscript has been approved for public release (88ABW-2013-1521).

Supplementary material

340_2013_5665_MOESM1_ESM.pdf (26.3 mb)
Supplementary material 1 (PDF 26963 kb)
340_2013_5665_MOESM2_ESM.pdf (17.4 mb)
Supplementary material 2 (PDF 17774 kb)


  1. 1.
    C. Espey, J.E. Dec, T.A. Litzinger, D.A. Santavicca, Combust Flame 109, 65 (1997)CrossRefGoogle Scholar
  2. 2.
    C. Schulz, V. Sick, Prog Energy Combust Sci 31, 75 (2005)CrossRefGoogle Scholar
  3. 3.
    B. Bohm, C. Heeger, R.L. Gordon, A. Dreizler, Flow Turbul. Combust. 86, 313 (2011)CrossRefGoogle Scholar
  4. 4.
    C.F. Kaminski, J. Hult, M. Alden, Appl. Phys. B 68, 757 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    I. Boxx, M. Stohr, C. Carter, W. Meier, Combust Flame 157, 1510 (2010)CrossRefGoogle Scholar
  6. 6.
    R.L. Gordon, C. Heeger, A. Dreizler, Appl. Phys. B 96, 745 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    N. Jiang, M. Webster, W.R. Lempert, J.D. Miller, T.R. Meyer, C.B. Ivey, P.M. Danehy, Appl Opt 50, A20 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J.D. Miller, M. Slipchenko, T.R. Meyer, N.B. Jiang, W.R. Lempert, J.R. Gord, Opt Lett 34, 1309 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M.N. Slipchenko, J.D. Miller, S. Roy, J.R. Gord, S.A. Danczyk, T.R. Meyer, Opt Lett 37, 1346 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M.N. Slipchenko, J.D. Miller, S. Roy, J.R. Gord, T.R. Meyer, Opt Express 21, 681 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    R.A. Patton, K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B 106, 457 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    C.D. Marshall, S.A. Payne, M.A. Henesian, J.A. Speth, H.T. Powell, J. Opt. Soc. Am. B 11, 774 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    P. Wnuk, Y. Stepanenko, C. Radzewicz, Opt Express 18, 7911 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Wu, G.A. Blake, S.N. Sun, J. Ling, Opt Commun 173, 371 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    N. Kondratyuk, A. Shagov, Proc. SPIE 47518, 110 (2001)ADSGoogle Scholar
  16. 16.
    M.C. Thurber, R.K. Hanson, Exp Fluids 30, 93 (2001)CrossRefGoogle Scholar
  17. 17.
    K.M. Tacina, W.J.A. Dahm, J Fluid Mech 415, 23 (2000)MathSciNetADSCrossRefMATHGoogle Scholar
  18. 18.
    R.W. Schefer, R.W. Dibble, AIAA 24th Aerospace Sciences Meeting (Reno, NV, 1986)Google Scholar
  19. 19.
    W.J.A. Dahm, P.E. Dimotakis, J Fluid Mech 217, 299 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    W. Thielicke, E. J. Stamhuis, (, 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joseph D. Miller
    • 1
    • 2
  • James B. Michael
    • 3
  • Mikhail N. Slipchenko
    • 1
  • Sukesh Roy
    • 1
  • Terrence R. Meyer
    • 3
  • James R. Gord
    • 2
  1. 1.Spectral EnergiesLLCDaytonUSA
  2. 2.Air Force Research LaboratoryAerospace Systems DirectorateWright-Patterson AFBUSA
  3. 3.Department of Mechanical EngineeringIowa State UniversityAmesUSA

Personalised recommendations