Applied Physics B

, Volume 116, Issue 1, pp 33–42 | Cite as

TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier

  • Ritobrata Sur
  • Kai Sun
  • Jay B. Jeffries
  • Ronald K. Hanson
  • Randy J. Pummill
  • Travis Waind
  • David R. Wagner
  • Kevin J. Whitty


Tunable diode laser absorption spectroscopy based in situ sensors for CO (2.33 μm), CO2 (2.02 μm), CH4 (2.29 μm) and H2O (1.35 μm) were deployed in a pilot-scale (1 ton/day), high-pressure (up to 18 atm), entrained flow, oxygen-blown, slagging coal gasifier at the University of Utah. Measurements of species mole fraction with 3-s time resolution were taken at the pre- and post-filtration stages of the gasifier synthesis gas (called here syngas) output flow. Although particulate scattering makes pre-filter measurements more difficult, this location avoids the time delay of flow through the filtration devices. With the measured species and known N2 concentrations, the H2 content was obtained via balance. The lower heating value and the Wobbe index of the gas mixture were estimated using the measured gas composition. The sensors demonstrated here show promise for monitoring and control of the gasification process.


Syngas Lower Heating Value Integrate Gasification Combine Cycle Tunable Diode Laser Absorption Spectroscopy Wavelength Modulation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the US Department of Energy (National Energy Technology Laboratory) with Dr. Susan Maley as the technical monitor and by AFOSR with Dr. Chiping Li as the technical monitor. The authors would like to thank David Wagner for his efforts to manage the operation of the gasifier.


  1. 1.
    T.F. Wall, Proc. Combust. Inst. 31, 31 (2007)CrossRefGoogle Scholar
  2. 2.
    S.J. Clayton, G.J. Stiegel, J.G. Wimer, US DoE report DOE/FE-0447 (2002)Google Scholar
  3. 3.
    J.B. Jeffries, A. Fahrland, W. Min, R.K. Hanson, D. Sweeney, D. Wagner, K.J. Whitty, Pittsburgh Coal Conference, Sept 2009Google Scholar
  4. 4.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Silver, Appl. Opt. 31, 707 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    D.S. Bomse, J.A. Silver, A.C. Stanton, Appl. Opt. 31, 718 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)CrossRefGoogle Scholar
  9. 9.
    P. Kluczynski, J. Gustafsson, A. Lindberg, O. Axner, Spectrochim. Acta B 56, 1277 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    J. Wolfrum, Proc. Combust. Inst. 27, 1 (1998)CrossRefGoogle Scholar
  12. 12.
    R. Sur, T.J. Boucher, M.R. Renfro, B.M. Cetegen, J. Electrochem. Soc. 157(1), B45 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Sur, T.J. Boucher, M.R. Renfro, B.M. Cetegen, Appl. Opt. 49, 61 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    R.K. Hanson, Proc. Combust. Inst. 33, 1 (2011)CrossRefGoogle Scholar
  15. 15.
    X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 33, 725 (2011)CrossRefGoogle Scholar
  16. 16.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Sun, X. Chao, R. Sur, J.B. Jeffries, R.K. Hanson, Appl. Phys. B. 110, 497 (2013). doi: 10.1007/s00340-012-5286-0 Google Scholar
  19. 19.
    R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Phys. B. (2013). doi: 10.1007/s00340-013-5567-2
  20. 20.
    R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, T. Clark, J. Anthony, S. Machovec, J. Northington, Meas. Sci. Tech. (in preparation) (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ritobrata Sur
    • 1
  • Kai Sun
    • 1
  • Jay B. Jeffries
    • 1
  • Ronald K. Hanson
    • 1
  • Randy J. Pummill
    • 2
  • Travis Waind
    • 2
  • David R. Wagner
    • 2
  • Kevin J. Whitty
    • 2
  1. 1.High Temperature Gasdynamics LaboratoryStanford UniversityStanfordUSA
  2. 2.Department of Chemical Engineering, Institute for Clean and Secure Energy (ICSE)University of UtahSalt Lake CityUSA

Personalised recommendations