Advertisement

Applied Physics B

, Volume 114, Issue 1–2, pp 107–128 | Cite as

A phase-imaging technique for cyclotron-frequency measurements

  • S. Eliseev
  • K. Blaum
  • M. Block
  • A. Dörr
  • C. Droese
  • T. Eronen
  • M. Goncharov
  • M. Höcker
  • J. Ketter
  • E. Minaya Ramirez
  • D. A. Nesterenko
  • Yu. N. Novikov
  • L. Schweikhard
Article

Abstract

A novel approach to mass measurements at the 10−9 level for short-lived nuclides with half-lives well below one second is presented. It is based on the projection of the radial ion motion in a Penning trap onto a position-sensitive detector. Compared with the presently employed time-of-flight ion-cyclotron-resonance technique, the novel approach is 25-times faster and provides a 40-fold gain in resolving power. Moreover, it offers a substantially higher sensitivity since just two ions are sufficient to determine the ion’s cyclotron frequency. Systematic effects specific to the technique that can change the measured cyclotron frequency are considered in detail. It is shown that the main factors that limit the maximal accuracy and resolving power of the technique are collisions of the stored ions with residual gas in the trap, the temporal instability of the trapping voltage, the anharmonicities of the trapping potential and the uncertainty introduced by the conversion of the cyclotron to magnetron motion.

Keywords

Cyclotron Frequency Radial Motion Trapping Potential Cyclotron Motion Trapping Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the Max-Planck Society, IMPRS-PTFS, the EU (ERC Grant No. 290870 - MEFUCO), BMBF (05P12HGFN5 and 05P12HGFNE) and by the Alliance Program of the Helmholtz Association (HA216/EMMI). Yu. N. thanks the Extreme Matter Institute (Darmstadt) for support.

References

  1. 1.
    P. Walker, Nucl. Phys. News 17, 11 (2007)CrossRefGoogle Scholar
  2. 2.
    F.K. Thielemann et al., Prog. in Part. and Nucl. Phys. 66, 346 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Oganessian, J. Phys.: Conference Series 337, 012005 (2012)ADSGoogle Scholar
  4. 4.
    K. Heyde, J. Wood, Rev. Mod. Phys. 83, 1467 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    J. Erler et al., Nature 486, 509 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M. Pfützner et al., Rev. Mod. Phys. 84, 567 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Y.E. Penionzhkevich, Phys. of Part. and Nucl. 43, 452 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Brett, Eur. Phys. J. A 48, 184 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    T. Faestermann et al., Prog. Part. Nucl. Phys. 69, 85 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    K. Blaum, Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    L. Schweikhard, G. Bollen (eds) Int. J. Mass. Spectrom. 251, 85 (2006)Google Scholar
  12. 12.
    K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T152, 014017 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    G. Bollen et al., Hyp. Int. 38, 793 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    M. Mukherjee et al., Eur. Phys. J. A35, 31 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    H.J. Kluge Int. J. Mass Spectrom. (2013). doi: 10.1016/j.ijms.2013.04.017
  16. 16.
    G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    M. König et al., Int. J. Mass. Spectrom. 142, 95 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    S. George et al., Phys. Rev. Lett. 98, 162501 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    S. George et al., Int. J. Mass Spectrom. 264, 110 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    M. Kretzschmar, Int. J. Mass. Spectrom. 264, 122 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    G. Bollen et al., Nucl. Instr. Methods B 70, 490 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    R. Ringle et al., Int. J. Mass Spectrom. 262, 33 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    S. Eliseev et al., Int. J. Mass Spectrom. 262, 45 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    S. Eliseev et al., Phys. Rev. Lett. 107, 152501 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    I. Bergström et al., Nucl. Instr. and Meth. A 487, 618 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    A. Gallant et al., Phys. Rev. C 85, 044311 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    M. Block et al., Eur. Phys. J. D 45, 39 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    G. Savard et al., Phys. Lett. A 158, 247 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    L. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  31. 31.
    L. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    G. Gabrielse, Int. J. Mass Spectrom. 279, 107 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    M. Kretzschmar, Int. J. Mass Spectrom. 309, 30 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Eliseev, Y. Novikov, K. Blaum, J. Phys. G. Nucl. Pgts. 39, 124003 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Eronen et al., Phys. Rev. Lett. 100, 132502 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Eronen et al., Phys. Rev. Lett. 103, 252501 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Eronen et al., Phys. Rev. C 83, 055501 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    S. Naimi et al., Phys. Rev. C 86, 014325 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    E.M. Ramirez et al., Science 337, 1207 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    A. Kankainen et al., Eur. Phys. J. A 48, 50 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    S. Simon et al., Phys. Rev. C 85, 064308 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    J. Schelt et al., Phys. Rev. C 85, 045805 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    M. Kretzschmar, Eur. Phys. J. D 48, 313 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    S. George et al., Int. J. Mass Spectrom. 299, 102 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    G. Bollen, R. Moore, G. Savard, H. Stolzenberg, J. Appl. Phys. 68, 4355 (1990)ADSCrossRefGoogle Scholar
  46. 46.
    G. Eitel et al., Nucl. Instr. Methods A 606, 475 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    M. Block et al., Nature 463, 785 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    M. Dworschak et al., Phys. Rev. C 81, 064312 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    O. Jagutzki et al., Nucl. Instr. and Meth. A 477, 244 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    MCP delay line detector, RoentDek Handels GmbH, Kelkheim Ruppertshain (http://www.roentdek.de)
  51. 51.
    C. Droese et al., Nucl. Instrum. Meth. A 632, 157 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    D. Neidherr et al., Nucl. Instrum. Meth. B 266, 4556 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    J. Ketter, T. Eronen, M. Höcker, S. Streubel, K. Blaum, arXiv:1305.4861v1 (2013)Google Scholar
  54. 54.
    R. Wolf et al., Nucl. Instrum. Meth. A 686, 82 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    R.N. Wolf, et al., Int. J. Mass Spectrom. 349350, 123–133 (2013). doi: 10.1016/j.ijms.2013.03.020

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Eliseev
    • 1
  • K. Blaum
    • 1
  • M. Block
    • 2
  • A. Dörr
    • 1
    • 3
  • C. Droese
    • 4
  • T. Eronen
    • 1
  • M. Goncharov
    • 1
    • 3
  • M. Höcker
    • 1
  • J. Ketter
    • 1
    • 3
  • E. Minaya Ramirez
    • 2
    • 5
  • D. A. Nesterenko
    • 6
    • 7
  • Yu. N. Novikov
    • 6
    • 7
  • L. Schweikhard
    • 4
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.Fakultät für Physik und AstronomieRuprecht-Karls-UniversitätHeidelbergGermany
  4. 4.Institut für PhysikErnst-Moritz-Arndt-UniversitätGreifswaldGermany
  5. 5.Helmholtz-Institut MainzJohannes Gutenberg-UniversitätMainzGermany
  6. 6.Petersburg Nuclear Physics InstituteGatchinaSt. PetersburgRussia
  7. 7.Department of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations