Applied Physics B

, Volume 114, Issue 1–2, pp 99–105 | Cite as

TITAN: an ion trap for accurate mass measurements of ms-half-life nuclides

  • A. Chaudhuri
  • C. Andreoiu
  • M. Brodeur
  • T. Brunner
  • U. Chowdhury
  • S. Ettenauer
  • A. T. Gallant
  • A. Grossheim
  • G. Gwinner
  • R. Klawitter
  • A. A. Kwiatkowski
  • K. G. Leach
  • A. Lennarz
  • D. Lunney
  • T. D. Macdonald
  • R. Ringle
  • B. E. Schultz
  • V. V. Simon
  • M. C. Simon
  • J. Dilling
Article

Abstract

The introduction of Paul traps, in particular linear radio-frequency quadrupoles in the early 2000s, has revolutionized the use of ion traps for probing the properties of radioactive nuclides. It opened the path to trapping all available nuclides, independent of their chemical properties. We present an overview of direct mass measurements of short-lived nuclides using TITAN, a Penning trap mass spectrometer facility particularly suitable for precision measurements of ms-half-life nuclides.

References

  1. 1.
    K. Blaum, Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    D. Lunney et al., Rev. Mod. Phys. 75, 1021 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    H. Schatz, Int. J. Mass Spectrom. 251, 293 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T 152, 014017 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Wolfgang Paul—Nobel Lecture: Electromagnetic Traps for Charged and Neutral Particles, Nobel Lectures in Physics 1981–1990 (World Scientific Publishing Co., Singapore, 1993)Google Scholar
  6. 6.
    F. Herfurth et al., Nucl. Instrum. Methods Phys. Res. Sect. A 469, 254 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    T. Brunner et al., Nucl. Instrum. Methods Phys. Res. Sect. A 676, 32 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    K. Blaum, Y.N. Novikov, G. Werth, Contemp. Phys. 51(2), 149 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    I. Tanihata, Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4067 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Blumenfeld, T. Nilsson, P. Van Duppen, Phys. Scr. T 152, 014023 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    G. Savard et al., Int. J. Mass Spectrom. 251, 252 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. Block et al., Eur. Phys. J. D 45, 39 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    V.S. Kolhinen et al., Nucl. Instrum. Methods Phys. Res. Sect. A 528, 776 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    R. Ringle et al., Nucl. Instrum. Methods Phys. Res. Sect. A 604, 536 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J. Dilling et al., Int. J. Mass Spectrom. 251, 198 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J. Ketelaer et al., Nucl. Instrum. Methods Phys. Res. Sect. A 594, 162 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    T. Eronen et al., Phys. Rev. C 79, 032802(R) (2009)ADSCrossRefGoogle Scholar
  19. 19.
    S. Rainville et al., Nature 438, 1096 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M. Brodeur et al., Phys. Rev. Lett. 108, 052504 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    E. Minaya Ramirez et al., Science 337, 1207 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    M. Smith et al., Phys. Rev. Lett. 101, 202501 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    A. Kellerbauer et al., Phys. Rev. Lett. 93, 072502 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    S. Naimi et al., Phys. Rev. C 86, 014325 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M. Wang et al., Chin. Phys. C 36, 1603 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    J.K. Tuli, Nuclear wallet cards http://www.nndc.bnl.gov (2005)
  27. 27.
    M.C. Simon et al., Rev. Sci. Instrum. 83, 02A912 (2012)CrossRefGoogle Scholar
  28. 28.
    V.V. Simon et al., J. Phys. Conf. Ser. 312, 052024 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Dombsky et al., Rev. Sci. Instrum. 71, 978 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    R. Kirchner et al., Nucl. Instrum. Methods 133(2), 187 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    K. Jayamanna et al., Rev. Sci. Instrum. 67, 1061 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    N.W. McLachlan, Theory and Applications of Mathieu Functions. (Clarendon, Oxford, 1947)Google Scholar
  33. 33.
    M. Drewsen, A. Brøner, Phys. Rev. A 62, 045401 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    N.V. Konenkov et al., J. Am. Soc. Mass Spectrom. 13, 597 (2002)CrossRefGoogle Scholar
  35. 35.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    M. König et al., Int. J. Mass Spectrom. 142, 95 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    G. Bollen et al., J. Appl. Phys. 68, 4355 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    G. Bollen, Nucl. Phys. A 693, 3 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    G. Savard et al., Phys. Lett. A 158, 247 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    R. Ringle et al., Int. J. Mass Spectrom. 263, 38 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    T. Baumann et al., Nature 449, 1022 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    R. Sanchez et al., Phys. Rev. Lett. 96, 033002 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    S. Ettenauer et al., Phys. Rev. C 81, 024314 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    M.F. Jager et al., Phys. Rev. C 86, 011304(R) (2012)ADSCrossRefGoogle Scholar
  48. 48.
    E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990)ADSCrossRefGoogle Scholar
  49. 49.
    W. Plaß et al., Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4560 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Chaudhuri
    • 1
  • C. Andreoiu
    • 2
  • M. Brodeur
    • 3
    • 12
  • T. Brunner
    • 1
    • 4
    • 10
  • U. Chowdhury
    • 1
    • 5
  • S. Ettenauer
    • 1
    • 6
    • 11
  • A. T. Gallant
    • 1
    • 6
  • A. Grossheim
    • 1
  • G. Gwinner
    • 5
  • R. Klawitter
    • 1
    • 9
  • A. A. Kwiatkowski
    • 1
  • K. G. Leach
    • 1
  • A. Lennarz
    • 1
    • 7
  • D. Lunney
    • 8
  • T. D. Macdonald
    • 1
    • 6
  • R. Ringle
    • 3
  • B. E. Schultz
    • 1
  • V. V. Simon
    • 1
    • 9
  • M. C. Simon
    • 1
  • J. Dilling
    • 1
    • 6
  1. 1.TRIUMFVancouverCanada
  2. 2.Department of ChemistrySimon Fraser UniversityBurnabyCanada
  3. 3.National Superconducting Cyclotron LaboratoryEast LansingUSA
  4. 4.Physik Department E12Technische Universität MünchenGarchingGermany
  5. 5.Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
  6. 6.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  7. 7.Institut für KernphysikWestfälische Wilhelms-UniversitätMünsterGermany
  8. 8.CSNSM-IN2P3-CNRSUniversité de Paris SudOrsayFrance
  9. 9.Max-Planck-Institut für KernphysikHeidelbergGermany
  10. 10.Department of PhysicsStanford UniversityStanfordUSA
  11. 11.Department of PhysicsHarvard UniversityCambridgeUSA
  12. 12.Department of PhysicsThe University of Notre DameNotre DameUSA

Personalised recommendations