Advertisement

Applied Physics B

, Volume 115, Issue 3, pp 371–377 | Cite as

Extending standard mask lithography exposure technique to spherical surfaces

  • Daniela StumpfEmail author
  • Uwe D. Zeitner
Article

Abstract

Similar to planar lithography, the use of a mask to produce multiple copies of a binary master sample is also possible in the case of spherical surfaces. Evidently, the spherical mask needs to have the opposite radius of curvature of the desired substrate, and additional problems arising from the curved geometry have to be taken into consideration. Inhomogeneities of the illumination impinging on the resist-coated surface negatively influence the exposure result. Ways of overcoming these difficulties to obtain satisfactory results for the implementation of the exposure in a conventional mask aligner are shown. Despite a lowered contrast due to back reflections and a varying distance between mask and substrate, exposure results of sufficient quality are achieved with the help of an adapted aperture and the use of water as an immersion fluid.

Keywords

Spherical Surface Ceric Ammonium Nitrate Lens Array Mask Aligner Laser Writer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.-H. Jeong, J. Kim, L.P. Lee, Science 312, 557–561 (2006)CrossRefADSGoogle Scholar
  2. 2.
    H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi, C.-J.Yu, J.B. Geddes III, J. Xiao, S. Wang, Y. Huang, J.A. Rogers, Nature 454, 748–753 (2008)CrossRefADSGoogle Scholar
  3. 3.
    D. Radtke, J. Duparré, U.D. Zeitner, A. Tünnermann, Opt. Express 15, 3067–3077 (2007)CrossRefADSGoogle Scholar
  4. 4.
    F. Zhao, Y. Xie, S. He, S. Fu, Z. Lu, Opt. Express 13, 5846–5852 (2005)CrossRefADSGoogle Scholar
  5. 5.
    K.M. Baker, Appl. Opt. 38, 352–356 (1999)CrossRefADSGoogle Scholar
  6. 6.
    A.P. Wood, Appl. Opt. 31, 2253–2258 (1992)CrossRefADSGoogle Scholar
  7. 7.
    D. Radtke, U.D. Zeitner, Opt. Express 15, 1167–1174 (2007)CrossRefADSGoogle Scholar
  8. 8.
    H.-C. Eckstein, U.D. Zeitner, Opt. Express 17, 17384–17390 (2009)CrossRefADSGoogle Scholar
  9. 9.
    G. Yoo, H. Lee, D. Radtke, M. Stumpf, U.D. Zeitner, J. Kanicki, Microelectron. Eng. 87, 83–87 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Fimia, L. Carretero, A. Beléndez, Appl. Opt. 33, 3633–3634 (1994)CrossRefADSGoogle Scholar
  11. 11.
    A. Mizutani, S. Takahira, H. Kikuta, Appl. Opt. 49, 6268–6275 (2010)CrossRefADSGoogle Scholar
  12. 12.
    S. Scheiding, A. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, A. Tünnermann, Opt. Express 19, 23938–23951 (2011)CrossRefADSGoogle Scholar
  13. 13.
    P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Steward, J. Ekerdt, S.V. Sreenivasan, J.C. Wolfe, C.G. Willson, J. Vac. Sci. Technol. B 17, 2965–2969 (1999)CrossRefGoogle Scholar
  14. 14.
    J.-J. Kim, S. Chae, K.-H. Jeong, Opt. Lett. 35, 823–825 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Xie, Z. Lu, F. Li, J. Zhao, Z. Weng, Opt. Express 10, 1043–1047 (2002)CrossRefADSGoogle Scholar
  16. 16.
    D. Radtke, M. Stumpf, U.D. Zeitner, Proc. SPIE 7716, 77160 (2010)CrossRefADSGoogle Scholar
  17. 17.
    T. Senn, J.P. Esquivel, N. Sabaté, B. Löchel, Microelectron. Eng. 88, 3043–3048 (2011)CrossRefGoogle Scholar
  18. 18.
    L. Erdmann, D. Efferenn, Opt. Eng. 36, 1094–1098 (1997)CrossRefADSGoogle Scholar
  19. 19.
    I. Stollberg, P. Hahmann, J. Gramss, http://www.vistec-semi.com, Published in Semiconductor Manufacturing Magazine (2006)
  20. 20.
    Schott glass catalogue, (2012)Google Scholar
  21. 21.
    M. Daimon, A. Masumura, Appl. Opt. 46, 3811–3820 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations