Applied Physics B

, Volume 115, Issue 3, pp 343–354 | Cite as

Rogue wave formation by accelerated solitons at an optical event horizon

  • A. Demircan
  • Sh. Amiranashvili
  • C. Brée
  • C. Mahnke
  • F. Mitschke
  • G. Steinmeyer
Article

Abstract

Rogue waves, by definition, are rare events of extreme amplitude. At the same time, they are surprisingly ubiquitous, in the sense that they can exist in a wide range of physical contexts and possess probability distributions that exhibit heavier tails than the normal Gaussian distribution. While many mechanisms have been demonstrated to explain the appearance of rogue waves in various specific systems, there is no known generic mechanism or general set of criteria shown to rule their appearance. Presupposing only the existence of a nonlinear Schrödinger-type equation together with a concave dispersion profile around a zero-dispersion wavelength, we demonstrate that solitons may experience acceleration and strong reshaping due to the interaction with continuum radiation, giving rise to extreme-value phenomena. The mechanism appears to be widely independent from interactions specific to the optical context, e.g., the Raman effect or other scattering processes that have no equivalent in other wave-supporting physical systems. In our system, a strong increase in the peak power may appear via reshaping while the pulse energy is nearly conserved. The conservative nature of the proposed reshaping-induced appearance of rogue waves makes this mechanism particularly robust.

References

  1. 1.
    K. Dysthe, H.E. Krogstad, P. Müller, Annu. Rev. Fluid Mech. 40, 287 (2008)CrossRefADSGoogle Scholar
  2. 2.
    A.N. Ganshin, et al., Phys. Rev. Lett. 101, 065303 (2008)CrossRefADSGoogle Scholar
  3. 3.
    Y.V. Bludov, V.V. Konotop, N. Akhmediev, Phys. Rev. A 80, 033610 (2009)CrossRefADSGoogle Scholar
  4. 4.
    M.S. Ruderman, Eur. Phys. J. Special Top. 185, 57 (2010)CrossRefADSGoogle Scholar
  5. 5.
    L. Stenflo, M. Marklund, J. Plasma Phys. 76, 293 (2010)CrossRefADSGoogle Scholar
  6. 6.
    D.R. Solli, et al., Nat. Biotechnol. 450, 1054 (2007)CrossRefADSGoogle Scholar
  7. 7.
    J. Kasparian, et al., Opt. Express 17, 12070 (2009)CrossRefADSGoogle Scholar
  8. 8.
    D. Majus, et al., Phys. Rev. A 83, 025802 (2011)CrossRefADSGoogle Scholar
  9. 9.
    C. Kharif, E. Pelinovsky, Eur. J. Mech. 22, 603 (2003)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    P.A.E.M. Jannsen, J. Phys. Oceanogr. 33, 863 (2003)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    M. Onorato, et al., Phys. Rev. Lett. 86, 5831 (2001)CrossRefADSGoogle Scholar
  12. 12.
    A. Mussot, et al., Opt. Exp. 17, 1502 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Taki, et al., Phys. Lett. A 374, 691 (2010)CrossRefMATHADSGoogle Scholar
  14. 14.
    D.R. Solli, C. Ropers, B. Jalali, Phys. Rev. Lett. 101, 233902 (2008)CrossRefADSGoogle Scholar
  15. 15.
    J.M. Dudley, G. Genty, B.J. Eggleton, Opt. Exp. 16, 3644 (2008)CrossRefADSGoogle Scholar
  16. 16.
    M. Erkintalo, G. Genty, J.M. Dudley, Opt. Lett. 35, 658 (2010)CrossRefADSGoogle Scholar
  17. 17.
    G. Genty, J.M. Dudley, B.J. Eggleton, Appl. Phys. B 94, 187 (2009)CrossRefADSGoogle Scholar
  18. 18.
    N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Phys. Rev. A 80, 043818 (2009)CrossRefADSGoogle Scholar
  19. 19.
    N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675 (2009)CrossRefMATHADSGoogle Scholar
  20. 20.
    N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. E 80, 026601 (2009)CrossRefADSGoogle Scholar
  21. 21.
    B. Kibler, et al., Nat. Phys. 6, 790 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, G. Steinmeyer, Sci. Rep. 2, 850 (2012)CrossRefADSGoogle Scholar
  23. 23.
    R. Smith, Math. Proc. Camb. Phil. Soc. 78, 517 (1975)CrossRefMATHGoogle Scholar
  24. 24.
    C.M. De Sterke, Opt. Lett. 17, 914 (1992)CrossRefADSGoogle Scholar
  25. 25.
    N. Rosanov, JETP Lett. 88, 501 (2008)CrossRefADSGoogle Scholar
  26. 26.
    V.E. Lobanov, A.P. Sukhorukov, Phys. Rev. A 82, 033809 (2010)CrossRefADSGoogle Scholar
  27. 27.
    A.V. Gorbach, D.V. Skryabin, Opt. Express. 15, 14560 (2008)CrossRefADSGoogle Scholar
  28. 28.
    D.V. Skryabin, A.V. Gorbach, Rev. Mod. Phys. 82, 1287 (2010)CrossRefADSGoogle Scholar
  29. 29.
    M. Novello, M. Visser, G. Volovik (eds.), Artificial Black Holes. (World Scientific, New Jersey, London, Singapore, Hong Kong, 2002)Google Scholar
  30. 30.
    F. Belgiorno, S.L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V.G. Sala, D. Faccio, Phys. Rev. Lett. 105, 203901 (2010)CrossRefADSGoogle Scholar
  31. 31.
    T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Sci. Agric. 319, 1367 (2008)CrossRefADSGoogle Scholar
  32. 32.
    D. Faccio, Cont. Phys. 1, 1 (2012)Google Scholar
  33. 33.
    G. Agrawal, Nonlinear Fiber Optics. (Academic Press, San Diego, 2001)Google Scholar
  34. 34.
    L.J. Garay, J.R. Anglin, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 85, 4643 (2000)CrossRefADSGoogle Scholar
  35. 35.
    T.A. Jacobson, G.E. Volovik, Phys. Rev. D 58, 064021 (1998)CrossRefADSGoogle Scholar
  36. 36.
    F. Belgiorno, S.L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V.G. Sala, D. Faccio, Phys. Rev. Lett. 105, 203901 (2010)CrossRefADSGoogle Scholar
  37. 37.
    G. Rousseaux, C. Mathis, P. Maïssa, T.G. Philbin, U. Leonhardt, New J. Phys. 10, 053015 (2008)CrossRefADSGoogle Scholar
  38. 38.
    R. Driben, F. Mitschke, N. Zhavoronkov, Opt. Exp. 18, 25993 (2010)CrossRefADSGoogle Scholar
  39. 39.
    V.E. Zakharov, E. Pushkarev, V.F. Shvets, V.V. Yan’kov, JETP Lett. 48, 83–87 (1988)Google Scholar
  40. 40.
    G. Genty, et al., Phys. Lett. A 374, 989 (2010)CrossRefMATHADSGoogle Scholar
  41. 41.
    V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence 1. Wave turbulence. (Springer, Berlin, 1992)CrossRefGoogle Scholar
  42. 42.
    S. Amiranashvili, A. Demircan, Phys. Rev. A 82, 013812 (2010)CrossRefADSGoogle Scholar
  43. 43.
    S. Amiranashvili, A. Demircan, Adv. Opt. Tech. 2011, 989515 (2011)Google Scholar
  44. 44.
    J. Herrmann, et al., Phys. Rev. Lett. 88, 173901 (2002)CrossRefADSGoogle Scholar
  45. 45.
    S. Amiranashvili, U. Bandelow, A. Mielke, Opt. Commun. 283, 480 (2009)CrossRefADSGoogle Scholar
  46. 46.
    A. Demircan, U. Bandelow, Opt. Comm. 244, 181 (2005)CrossRefADSGoogle Scholar
  47. 47.
    J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)CrossRefADSGoogle Scholar
  48. 48.
    M. Erkintalo, G. Genty, J.M. Dudley, Eur. Phys. J. Special Top. 185, 135 (2010)CrossRefADSGoogle Scholar
  49. 49.
    N. Akhmediev, E. Pelinovsky, Eur. Phys. J. Special Top. 185, 1 (2010)CrossRefADSGoogle Scholar
  50. 50.
    A. Demircan, U. Bandelow, Appl. Phys. B 86, 31 (2007)CrossRefADSGoogle Scholar
  51. 51.
    A. Demircan, S. Amiranashvili, G. Steinmeyer, Phys. Rev. Lett. 106, 163901 (2011)CrossRefADSGoogle Scholar
  52. 52.
    S.-J. Im, A. Husakou, J. Herrmann, Opt. Exp. 18, 5367 (2010)CrossRefADSGoogle Scholar
  53. 53.
    K.E. Lynch-Klarup, E.D. Mondloch, M.G. Raymer, D. Arrestier, F. Gerome, F. Benabid, Opt. Exp. 21, 13726 (2013)CrossRefGoogle Scholar
  54. 54.
    A. Demircan, S. Amiranashvili, C. Brée, G. Steinmeyer, Phys. Rev. Lett. 110, 233901 (2013)CrossRefADSGoogle Scholar
  55. 55.
    R. Driben, I. Babushkin, Opt. Lett. 37, 5157 (2012)CrossRefADSGoogle Scholar
  56. 56.
    A.V. Yulin, R. Driben, B.A. Malomed, D.V. Skryabin, Opt. Exp. 21, 14481 (2013)CrossRefADSGoogle Scholar
  57. 57.
    F.M. Mitschke, Mollenauer, Opt. Lett. 11, 659 (1986)Google Scholar
  58. 58.
    B. Kibler, K. Hammani, C. Michel, C. Finot, A. Picozzi, Phys. Lett. A 375, 3149 (2011)CrossRefMATHADSGoogle Scholar
  59. 59.
    H. Lamb, Hydrodynamics (6th ed). (Cambridge University Press, Cambridge, 1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Demircan
    • 1
  • Sh. Amiranashvili
    • 2
  • C. Brée
    • 2
  • C. Mahnke
    • 3
  • F. Mitschke
    • 3
  • G. Steinmeyer
    • 4
    • 5
  1. 1.Institute for Quantum OpticsLeibniz Universität HannoverHannoverGermany
  2. 2.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  3. 3.Institute for PhysicsUniversity of RostockRostockGermany
  4. 4.Max Born Institute for Nonlinear Optics and Short Pulse SpectroscopyBerlinGermany
  5. 5.Optoelectronics Research CentreTampere University of TechnologyTampereFinland

Personalised recommendations