Applied Physics B

, Volume 114, Issue 1–2, pp 17–25 | Cite as

All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions

  • Hsiang-Yu Lo
  • Joseba Alonso
  • Daniel Kienzler
  • Benjamin C. Keitch
  • Ludwig E. de Clercq
  • Vlad Negnevitsky
  • Jonathan P. Home
Article

Abstract

We describe laser systems for photoionization, Doppler cooling, and quantum state manipulation of beryllium ions. For photoionization of neutral beryllium, we have developed a continuous-wave 235 nm source obtained by two stages of frequency doubling from a diode laser at 940 nm. The system delivers up to 400 mW at 470 nm and 28 mW at 235 nm. For control of the beryllium ion, three laser wavelengths at 313 nm are produced by sum-frequency generation and second-harmonic generation from four infrared fiber lasers. Up to 7.2 W at 626 nm and 1.9 W at 313 nm are obtained using two pump beams at 1051 and 1551 nm. Intensity drifts of around 0.5 % per hour have been measured over 8 h at a 313 nm power of 1 W. These systems have been used to load beryllium ions into a segmented ion trap.

Notes

Acknowledgments

We thank Florian Leupold (ETH Zürich) for careful reading and comments on the manuscript, Andrew Wilson and Dietrich Leibfried (NIST, Boulder) for useful information on cavity design and helpful discussions, Christian Rahlff (Covesion Ltd.) for information on PPLN crystals, and the Mechanical Workshop at ETH for manufacturing optomechanical components. This work was supported by the Swiss NSF under Grant No. 200021 134776, the NCCR QSIT, and ETH-Zürich.

References

  1. 1.
    C. Langer, R. Ozeri, J. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. Blakestad, J. Britton, D. Hume, W. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. Schmidt, D. Wineland, Phys. Rev. Lett. 95, 060502 (2005). doi:10.1103/PhysRevLett.95.060502 ADSCrossRefGoogle Scholar
  2. 2.
    D.M. Lucas, B.C. Keitch, J.P. Home, G. Imreh, M.J. McDonnell, D.N. Stacey, D.J. Szwer, A.M. Steane, arXiv:0710.4421 (2007)Google Scholar
  3. 3.
    D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998)CrossRefGoogle Scholar
  4. 4.
    C. Ospelkaus, U. Warring, Y. Colombe, K.R. Brown, J.M. Amini, D. Leibfried, D.J. Wineland, Nature 476, 181 (2011). doi:10.1038/nature10290 ADSCrossRefGoogle Scholar
  5. 5.
    P. Blythe, B. Roth, U. Fröhlich, H. Wenz, S. Schiller, Phys. Rev. Lett. 95, 183002 (2005). doi: 10.1103/PhysRevLett.95.183002 Google Scholar
  6. 6.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A.B.L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008). doi:10.1126/science.1154622 ADSCrossRefGoogle Scholar
  7. 7.
    M. Schwarz, O.O. Versolato, A. Windberger, F.R. Brunner, T. Ballance, S.N. Eberle, J. Ullrich, P.O. Schmidt, A.K. Hansen, A.D. Gingell, M. Drewsen, J.R.C. Lopez-Urrutia, Rev. Sci. Instrum. 83, 083115 (2012). doi:10.1063/1.4742770
  8. 8.
    T. Tan, J. Gaebler, R. Bowler, Y. Lin, J. Jost, D. Leibfried, D. Wineland, Phys. Rev. Lett. 110, 263002 (2013). doi:10.1103/PhysRevLett.110.263002 Google Scholar
  9. 9.
    H. Ball, M.W. Lee, S.D. Gensemer, M.J. Biercuk, Rev. Sci. Instrum. 84, 063107 (2013). doi:10.1063/1.4811093 Google Scholar
  10. 10.
    R.B. Blakestad, Transport of Trapped-Ion Qubits within a Scalable Quantum Processor. Ph.D. thesis, University of Colorado (2010)Google Scholar
  11. 11.
    A. Wilson, C. Ospelkaus, A. VanDevender, J. Mlynek, K. Brown, D. Leibfried, D. Wineland, Appl. Phys. B 105, 741 (2011). doi: 10.1007/s00340-011-4771-1
  12. 12.
    S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, S. Schiller, Appl. Phys. B 103, 27 (2011). doi:10.1007/s00340-011-4435-1
  13. 13.
    N. Kjaergaard, L. Hornekaer, A.M. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B 71, 207 (2000). doi:10.1007/s003400000296 ADSCrossRefGoogle Scholar
  14. 14.
    D.M. Lucas, A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J.P. Stacey, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. A 69, 012711 (2004). doi:10.1103/PhysRevA.69.012711
  15. 15.
    G.D. Boyd, D.A. Kleinman, J. Appl. Phys. 39, 3597 (1968). http://dx.doi.org/10.1063/1.1656831
  16. 16.
    R.L. Targat, J.J. Zondy, P. Lemonde, Opt. Commun. 247, 471 (2005). doi:10.1016/j.optcom.2004.11.081
  17. 17.
    R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, H. Ward, Appl. Phys. B 31, 97 (1983). doi:10.1007/BF00702605. 10.1007/BF00702605
  18. 18.
    T. Freegarde, C. Zimmermann, Opt. Commun. 199, 435 (2001). doi:10.1016/S0030-4018(01)01584-X
  19. 19.
    A. Hemmerich, D.H. McIntyre, C. Zimmermann, T.W. Hänsch, Opt. Lett. 15, 372 (1990). doi:10.1364/OL.15.000372
  20. 20.
    C.E. Langer, High Fidelity Quantum Information Processing with Trapped Ions. Ph.D. thesis, University of Colorado (2006)Google Scholar
  21. 21.
    R. Ozeri, W.M. Itano, R.B. Blakestad, J. Britton, J. Chiaverini, J.D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J.H. Wesenburg, D.J. Wineland, Phys. Rev. A 75, 042329 (2007). doi:10.1103/PhyRevA.75.042329 ADSCrossRefGoogle Scholar
  22. 22.
    R. Batchko, G. Miller, A. Alexandrovski, M. Fejer, R. Byer, in Lasers and Electro-Optics, 1998. CLEO 98. Technical Digest. Summaries of Papers Presented at the Conference on (1998), pp. 75–76. doi:10.1109/CLEO.1998.675885
  23. 23.
    W. Demtröder, Laser Spectroscopy (Springer, New York, 1981)CrossRefGoogle Scholar
  24. 24.
    B.E. King, Quantum State Engineering and Information Processing with Trapped Ions. Ph.D. thesis, University of Colorado (1999)Google Scholar
  25. 25.
    G. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 2012)Google Scholar
  26. 26.
    W.P. Risk, T.R. Gosnell, A.V. Nurmikko, Compact Blue–Green Lasers (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
  27. 27.
    Castech Inc. BBO Product information (2013). http://www.castech.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hsiang-Yu Lo
    • 1
  • Joseba Alonso
    • 1
  • Daniel Kienzler
    • 1
  • Benjamin C. Keitch
    • 1
  • Ludwig E. de Clercq
    • 1
  • Vlad Negnevitsky
    • 1
  • Jonathan P. Home
    • 1
  1. 1.Institute for Quantum Electronics, ETH ZürichZürichSwitzerland

Personalised recommendations