Advertisement

Applied Physics B

, Volume 115, Issue 2, pp 257–262 | Cite as

Experimental study of 199Hg spin anti-relaxation coatings

  • Z. Chowdhuri
  • M. Fertl
  • M. Horras
  • K. Kirch
  • J. Krempel
  • B. Lauss
  • A. Mtchedlishvili
  • D. Rebreyend
  • S. Roccia
  • P. Schmidt-WellenburgEmail author
  • G. Zsigmond
Article

Abstract

We report on a comparison of spin relaxation rates in a 199Hg magnetometer using different wall coatings. A compact mercury magnetometer was built for this purpose. Glass cells coated with fluorinated materials show longer spin coherence times than if coated with their hydrogenated homologues. The longest spin relaxation time of the mercury vapor was measured with a fluorinated paraffin wall coating.

Keywords

Decay Time Constant Registered Trademark 199Hg 199Hg Atom 199Hg Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank the University of Fribourg atomic physics group for the preparation of 204Hg bulbs and help with the cesium magnetometry. We thank the initial support of this work by TU München, in particular by P. Fierlinger and G. Petzoldt. The authors are grateful for the excellent technical support by F. Burri and M. Meier.

References

  1. 1.
    D. Budker, M. Romalis, Nat. Phys. 3, 227 (2007)CrossRefGoogle Scholar
  2. 2.
    S. Lamoreaux, J. Jacobs, B. Heckel et al., Phys. Rev. Lett. 59, 2275 (1987)CrossRefADSGoogle Scholar
  3. 3.
    J. Jacobs, W. Klipstein, S. Lamoreaux et al., Phys. Rev. Lett. 71, 3782 (1993)CrossRefADSGoogle Scholar
  4. 4.
    K. Green, P.G. Harris, P. Iaydjiev et al., Nucl. Instrum. Methods A 404, 381 (1998)CrossRefADSGoogle Scholar
  5. 5.
    M.D. Swallows, T.H. Loftus, W.C. Griffith et al., Phys. Rev. A 87, 012102 (2013)CrossRefADSGoogle Scholar
  6. 6.
    C. Baker, G. Ban, K. Bodek et al., Phys. Proc. 17, 159 (2011)CrossRefADSGoogle Scholar
  7. 7.
    M. Horras, A highly sensitive Hg magnetometer for the nEDM experiment. Ph.D. thesis, ETH Zürich (2012)Google Scholar
  8. 8.
    Y. Chibane, A new magnetometer for the nEDM experiment. Ph.D. thesis, University of Sussex (1990)Google Scholar
  9. 9.
    M.V. Romalis, L. Lin, J. Chem. Phys. 120, 1511 (2004)CrossRefADSGoogle Scholar
  10. 10.
    G. Cates, S. Schaefer, W. Happer, Phys. Rev. A 37, 2877 (1988)CrossRefADSGoogle Scholar
  11. 11.
    W. Franzen, Phys. Rev. 115, 850 (1959)CrossRefADSGoogle Scholar
  12. 12.
    S. Groeger, A. Pazgalev, A. Weis, Appl. Phys. B Lasers Optics 80, 645 (2005)CrossRefADSGoogle Scholar
  13. 13.
    A.S. Pazgalev, Lamp-pumped Cs magnetometer test stand user manual. Fribourg, unpublished (2008)Google Scholar
  14. 14.
    K. Bodek, M. Daum, R. Henneck et al., Nucl. Instrum. Methods A 597, 222 (2008)CrossRefADSGoogle Scholar
  15. 15.
    S. Roccia, La comagnétométrie mercure pour la mesure du moment électrique du neutron. Ph.D. thesis, Université Joseph Fourier, Grenoble I (2009)Google Scholar
  16. 16.
    D.J.R. May, A high precision comparison of the gyromagnetic ratios of the 199 Hg atom and the neutron. Ph.D. thesis, University of Sussex (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Z. Chowdhuri
    • 1
  • M. Fertl
    • 1
  • M. Horras
    • 1
  • K. Kirch
    • 1
    • 2
  • J. Krempel
    • 2
  • B. Lauss
    • 1
  • A. Mtchedlishvili
    • 1
  • D. Rebreyend
    • 3
  • S. Roccia
    • 4
  • P. Schmidt-Wellenburg
    • 1
    Email author
  • G. Zsigmond
    • 1
  1. 1.Paul Scherrer InstitutVilligenSwitzerland
  2. 2.ETH ZurichZurichSwitzerland
  3. 3.LPSCUniversité Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INPGrenobleFrance
  4. 4.CSNSM, CNRS/IN2P3Université Paris SudOrsayFrance

Personalised recommendations