Applied Physics B

, Volume 112, Issue 4, pp 473–477 | Cite as

Single crystal formation of amino acid with high temporal controllability by combining femtosecond and continuous wave laser trapping

Rapid Communication

Abstract

We investigated laser trapping crystallization of glycine by using femtosecond (fs) laser as a trapping light source. Impulsively exerted fs laser pulses crystallized glycine more effectively than that induced by continuous wave (CW) laser trapping. Highly efficient crystallization and crystal growth behavior indicates fs laser irradiation increased the concentration not only at the focal spot, but also around the laser focus. Furthermore, we found that irradiation of fs pulses to CW laser-induced locally high supersaturation region enables immediate crystallization. Spatiotemporally controlled triggering of a single crystal formation with sub-second time resolution has achieved by integrating fs and CW laser trapping techniques.

Supplementary material

340_2013_5595_MOESM1_ESM.doc (38 kb)
Supplementary material (DOC 11 kb)

Supplementary material (MP4 3383 kb)

Supplementary material (MP4 3338 kb)

References

  1. 1.
    B. Garetz, J. Aber, N. Goddard, R. Young, A. Myerson, Phys. Rev. Lett. 77, 3475 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    J. Zaccaro, J. Matic, A. Myerson, B. Garetz, Cryst. Growth Des. 1, 5 (2001)CrossRefGoogle Scholar
  3. 3.
    C. Duffus, P.J. Camp, A.J. Alexander, J. Am. Chem. Soc. 131, 11676 (2009)CrossRefGoogle Scholar
  4. 4.
    J.A. Jacob, S. Sorgues, A. Dazzi, M. Mostafavi, J. Belloni, Cryst. Growth Des. 12, 5980 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Adachi, K. Takano, Y. Hosokawa, T. Inoue, Y. Mori, H. Matsumura, M. Yoshimura, Y. Tsunaka, M. Morikawa, S. Kanaya, H. Masuhara, Y. Kai, T. Sasaki, Jpn. J. Appl. Phys. 2(42), L798 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    T. Sugiyama, T. Adachi, H. Masuhara, Chem. Lett. 36, 1480 (2007)CrossRefGoogle Scholar
  7. 7.
    K.-I. Yuyama, T. Sugiyama, H. Masuhara, J. Phys. Chem. Lett. 1, 1321 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Rungsimanon, K.-I. Yuyama, T. Sugiyama, H. Masuhara, Cryst. Growth Des. 10, 4686 (2010)CrossRefGoogle Scholar
  9. 9.
    T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, M.-A. Haga, Acs Appl. Mater. Inter. 4, 1158 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Pan, A. Ishikawa, N. Tamai, Phys. Rev. B 75, 161305 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Jiang, T. Narushima, H. Okamoto, Nat. Phys. 6, 1005 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Usman, W.-Y. Chiang, H. Masuhara, J. Photochem. Photobiol. A 234, 83 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Ito, T. Sugiyama, N. Toitani, G. Katayama, H. Miyasaka, J. Phys. Chem. B 111, 2365 (2007)CrossRefGoogle Scholar
  14. 14.
    A. Vogel, J. Noack, G. Huttman, G. Paltauf, Appl. Phys. B Lasers. O 81, 1015 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    T.-H. Liu, T. Uwada, T. Sugiyama, A. Usman, Y. Hosokawa, H. Masuhara, T.-W. Chiang, C.-J. Chen, J. Cryst. Growth 366, 101 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    P.G. Vekilov, Cryst. Growth Des. 10, 5007 (2010)CrossRefGoogle Scholar
  17. 17.
    P. Vekilov, Biophys. J. 86, 671 (2004)Google Scholar
  18. 18.
    A. Usman, W.-Y. Chiang, H. Masuhara, Sci. Prog. 96, 1 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations