Applied Physics B

, Volume 115, Issue 2, pp 237–246 | Cite as

Comparison between discrete dipole approximation and other modelling methods for the plasmonic response of gold nanospheres

  • V. L. Y. Loke
  • G. M. Huda
  • E. U. Donev
  • V. Schmidt
  • J. T. Hastings
  • M. Pinar Mengüç
  • T. Wriedt
Article

Abstract

We investigate the plasmonic response of gold nanospheres calculated using discrete dipole approximation validated against the results from other discretization methods, namely the finite-difference time-domain method and the finite-element methods. Comparisons are also made with calculations from analytical methods such as the Mie solution and the null-field method with discrete sources. We consider the nanoparticle interacting with the incident field both in free space and sitting on a planar substrate. In the latter case, discrete dipole approximation with surface interaction is used; this includes the interaction with the ‘image dipoles’ using Sommerfeld integration.

References

  1. 1.
    T. Nagao, G. Han, C. Hoang, J.S. Wi, A. Pucci, D. Weber, F. Neubrech, V.M. Silkin, D. Enders, O. Saito, M. Rana, Sci. Tech. Adv. Mater. 11, 054506 (2010)CrossRefGoogle Scholar
  2. 2.
    B. Schaffer, U. Hohenester, A. Trugler, F. Hofer, Phys. Rev. B 79, 041401 (2009)CrossRefADSGoogle Scholar
  3. 3.
    D.G. Georganopoulou, L. Chang, J.M. Nam, C.S. Thaxton, E.J. Mufson, W.L. Klein, C.A. Mirkin, Proc. Natl. Acad. Sci. USA. 102, 2273–2276 (2005)CrossRefADSGoogle Scholar
  4. 4.
    J.C.Y. Kah, K.W. Kho, C.G.L. Lee, C.J.R. Sheppard, Z.X. Shen, K.C. Soo, M.C. Olivo, Int. J. Nanomed. 2, 785–798 (2007)Google Scholar
  5. 5.
    H.M. Hiep, T. Endo, K. Kerman, M. Chikae, D.K. Kim, S. Yamamura, Y. Takamura, E. Tamiya, Sci. Tech. Adv. Mater. 8, 331–338 (2007)CrossRefGoogle Scholar
  6. 6.
    R. Esparza, G. Rosas, E. Valenzuela, S.A. Gamboa, U. Pal, R. Perez, Materia-Rio de Janeiro 13, 579–586 (2008)Google Scholar
  7. 7.
    M.P. Pileni, J. Phys. 23, 503102 (2011)Google Scholar
  8. 8.
    V.L.Y. Loke, M.P. Mengüç, T.A. Nieminen, JQSRT 112, 1711–1725 (2011)CrossRefADSGoogle Scholar
  9. 9.
    E. Purcell, C. Pennypacker, Astrophys. J. 186, 705–714 (1973)CrossRefADSGoogle Scholar
  10. 10.
    B. Draine, Astrophys. J. 333, 848–872 (1988)CrossRefADSGoogle Scholar
  11. 11.
    S. Ahmed, Electron. Lett. 4, 387–389 (1968)CrossRefGoogle Scholar
  12. 12.
    K.S. Yee, IEEE Trans. Antenn. Propag. 14, 302–307 (1966)CrossRefMATHADSGoogle Scholar
  13. 13.
    L. Lorenz, Videnskabernes Selskabs Skrifter 6, 2–62 (1890)Google Scholar
  14. 14.
    G. Mie, Ann. Phys. 25, 377–445 (1908)CrossRefMATHGoogle Scholar
  15. 15.
    T. Wriedt, JQSRT 106, 535–545 (2007)CrossRefADSGoogle Scholar
  16. 16.
    P.C. Waterman, Proc. IEEE 53, 805–812 (1965)CrossRefGoogle Scholar
  17. 17.
    T. Wriedt, JQSRT 110, 833–843 (2009)CrossRefADSGoogle Scholar
  18. 18.
    J. Parsons, C.P. Burrows, J.R. Sambles, W.L. Barnes, J. Mod. Opt. 57, 356–365 (2010)CrossRefMATHADSGoogle Scholar
  19. 19.
    X.H. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Lasers Med. Sci.23, 217–228 (2008)CrossRefGoogle Scholar
  20. 20.
    K.M.M. Aung, Y.N. Tan, K.V. Desai, X.D. Su, Aust. J. Chem. 64, 1286–1292 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond. (Wiley, New York, 2011)CrossRefGoogle Scholar
  22. 22.
    A. Vial, T. Laroche, Appl. Phys. B 93, 139–143 (2008)CrossRefADSGoogle Scholar
  23. 23.
    W. Sellmeier, Ann. Phys. Chem. 219, 272–282 (1871)CrossRefADSGoogle Scholar
  24. 24.
    R. Luebbers, F.P. Hunsberger, K.S. Kunz, R.B. Standler, M. Schneider, IEEE Trans. Electromagn. Compat. 32, 222–227 (1990)CrossRefGoogle Scholar
  25. 25.
    B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491–1499 (1994)CrossRefADSGoogle Scholar
  26. 26.
    V.L.Y. Loke, M.P. Mengüç, in Proceedings of ELS XII Helsinki 134–137 (2010)Google Scholar
  27. 27.
    Y. Saad, M.H. Schultz, SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    B.T. Draine, J. Goodman, Astrophys. J. 405, 685–697 (1993)CrossRefADSGoogle Scholar
  29. 29.
    V.L.Y. Loke, M.P. Mengüç, J. Opt. Soc. Am. A 27, 2293–2303 (2010)CrossRefGoogle Scholar
  30. 30.
    A. Sommerfeld, Ann. Physik 28, 665–736 (1909)CrossRefMATHADSGoogle Scholar
  31. 31.
    W.C. Chew, Waves, Fields in Inhomogeneous Media. (Van Nostrand Reinhold, New York, 1990)Google Scholar
  32. 32.
    R. Schmehl, B.M. Nebeker, E.D. Hirleman, J. Opt. Soc. Am. A 14, 3026–3036 (1997)CrossRefADSGoogle Scholar
  33. 33.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)Google Scholar
  34. 34.
    J.P. Berenger, J. Comput. Phys. 114, 185–200 (1994)CrossRefMATHMathSciNetADSGoogle Scholar
  35. 35.
    Z.S. Sacks, D.M. Kingsland, R. Lee, J.F. Lee, IEEE Trans. Antenn. Propag. 43, 1460–1463 (1995)CrossRefADSGoogle Scholar
  36. 36.
    S. Gedney, IEEE Trans. Antennas Propagat AP-44, 1630–1639 (1996)CrossRefADSGoogle Scholar
  37. 37.
    J.A. Roden, S.D. Gedney, Microw. Opt. Tech. Lett. 27, 334–339 (2000)CrossRefGoogle Scholar
  38. 38.
    Lumerical FDTD Solutions Package Reference Guide for FDTD Solutions v7.0.1 ed (2010)Google Scholar
  39. 39.
    M.A. Morgan, K.K. Mei, IEEE Trans. Antenn. Propag. 27, 202–214 (1979)CrossRefADSGoogle Scholar
  40. 40.
    R. Mittra, O. Ramahi, Finite element and finite difference methods in Electromagnetic Scattering, vol. II, ed. by M. Morgan (Elsevier, New York, 1990)Google Scholar
  41. 41.
    J.L. Volakis, A. Chatterjee, L.C. Kempel, Finite Element Method for Electromagnetics. (IEEE Press, New York, 1998)CrossRefMATHGoogle Scholar
  42. 42.
    X.Q. Sheng, J.M. Jin, J.M. Song, C.C. Lu, W.C. Chew, IEEE T. Antenn. Propag. 46, 303–311 (1998)CrossRefADSGoogle Scholar
  43. 43.
    COMSOL Multiphysics RF Module Reference Guide v3.5a ed (2008)Google Scholar
  44. 44.
    G.M. Huda, E.U. Donev, M.P. Mengüç, J.T. Hastings, Opt. Express 19, 12679–12687 (2011)CrossRefGoogle Scholar
  45. 45.
    COMSOL Mie scattering off plasmonic nanoparticle and radar cross-section computations (2008) http://www.comsol.com/showroom/gallery/3459/
  46. 46.
    P. Debye, Ann. Phys. 30, 57–136 (1909)CrossRefMATHGoogle Scholar
  47. 47.
    C. Mätzler, MATLAB functions for Mie scattering and absorption v2 Tech. Rep. Research Report No. 2002-11 University of Bern (2002)Google Scholar
  48. 48.
    A. Doicu, Y.A. Eremin, T. Wriedt, Opt. Commun. 159, 266–277 (1999)CrossRefADSGoogle Scholar
  49. 49.
    A. Doicu, Y. Eremin, T. Wriedt, Comput. Phys. Commun. 134, 1–10 (2001)CrossRefMATHADSGoogle Scholar
  50. 50.
    M.I. Mishchenko, L.D. Travis, A.A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. (Cambridge University Press, Cambridge, 2006)Google Scholar
  51. 51.
    D.W. Mackowski, JQSRT 109 770–788 ISSN 0022-4073 (2008) http://www.sciencedirect.com/science/article/pii/S0022407307002282
  52. 52.
    M. Quinten, A. Pack, R. Wannemacher, Appl. Phys. B 68, 87–92 (1999)CrossRefADSGoogle Scholar
  53. 53.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  54. 54.
    M.A. Yurkin, A.G. Hoekstra, JQSRT 112, 2234–2247 (2011)CrossRefADSGoogle Scholar
  55. 55.
    M.A. Yurkin, de D. Kanter, A.G. Hoekstra, J. Nanophoton. 4, 041585 (2010)CrossRefADSGoogle Scholar
  56. 56.
    M.A. Yurkin, M. Min, A.G. Hoekstra, Phys. Rev. E 82, 036703–12 (2010)CrossRefADSGoogle Scholar
  57. 57.
    N. Geuquet, L. Henrard, Ultramicroscopy 110, 1075–1080 (2010)CrossRefGoogle Scholar
  58. 58.
    R.J. Lytle, D.L. Lager, Numerical evaluation of Sommerfeld integrals. Technical report (1974). UCRL-51688 Lawrence Livermore Laboratory Livermore, CaliforniaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. L. Y. Loke
    • 1
    • 3
  • G. M. Huda
    • 2
  • E. U. Donev
    • 2
  • V. Schmidt
    • 1
  • J. T. Hastings
    • 2
  • M. Pinar Mengüç
    • 4
  • T. Wriedt
    • 5
  1. 1.Mechanische VerfahrenstechnikUniversity of BremenBremenGermany
  2. 2.Department of Electrical and Computer EngineeringUniversity of KentuckyLexingtonUSA
  3. 3.School of Mathematics and PhysicsThe University of QueenslandQueenslandAustralia
  4. 4.School of EngineeringÖzyeğin UniversityIstanbulTurkey
  5. 5.Institut für WerkstofftechnikUniversity of BremenBremenGermany

Personalised recommendations