Applied Physics B

, Volume 115, Issue 1, pp 9–24 | Cite as

Multi-species laser absorption sensors for in situ monitoring of syngas composition

  • Ritobrata Sur
  • Kai Sun
  • Jay B. Jeffries
  • Ronald K. Hanson


Tunable diode laser absorption spectroscopy sensors for detection of CO, CO2, CH4 and H2O at elevated pressures in mixtures of synthesis gas (syngas: products of coal and/or biomass gasification) were developed and tested. Wavelength modulation spectroscopy (WMS) with 1f-normalized 2f detection was employed. Fiber-coupled DFB diode lasers operating at 2325, 2017, 2290 and 1352 nm were used for simultaneously measuring CO, CO2, CH4 and H2O, respectively. Criteria for the selection of transitions were developed, and transitions were selected to optimize the signal and minimize interference from other species. For quantitative WMS measurements, the collision-broadening coefficients of the selected transitions were determined for collisions with possible syngas components, namely CO, CO2, CH4, H2O, N2 and H2. Sample measurements were performed for each species in gas cells at a temperature of 25 °C up to pressures of 20 atm. To validate the sensor performance, the composition of synthetic syngas was determined by the absorption sensor and compared with the known values. A method of estimating the lower heating value and Wobbe index of the syngas mixture from these measurements was also demonstrated.


Syngas Modulation Depth Lower Heating Value Tunable Diode Laser Absorption Spectroscopy Wavelength Modulation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the US Department of Energy (National Energy Technology Laboratory) with Dr. Susan Maley as the technical monitor and by AFOSR with Dr. Chiping Li as the technical monitor.


  1. 1.
    M. Joshi, S. Lee, Energy Sour. 18(5), 537 (1996)CrossRefGoogle Scholar
  2. 2.
    T.F. Wall, Proc. Combust. Inst. 31, 31 (2007)CrossRefGoogle Scholar
  3. 3.
    S.J. Clayton, G.J. Stiegel, J.G. Wimer, US DoE report DOE/FE-0447 (2002)Google Scholar
  4. 4.
    R.K. Hanson, Proc. Combust. Inst. 33, 1 (2011)CrossRefGoogle Scholar
  5. 5.
    P. Kluczynski, J. Gustafsson, A. Lindberg, O. Axner, Spectrochimica Acta Part B 56, 1277 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J. Wolfrum, Proc. Combust. Inst. 27, 1 (1998)CrossRefGoogle Scholar
  8. 8.
    X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 33, 725 (2011)CrossRefGoogle Scholar
  9. 9.
    V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611 (2005)CrossRefGoogle Scholar
  10. 10.
    R.R. Skaggs, R.G. Daniel, A.W. Miziolek, K.L. McNesby, C. Herud, W.R. Bolt, D. Horton, Appl. Spectrosc. 53, 1143 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    T. Gulluk, H.E. Wagner, Rev. Sci. Instrum. 68, 230 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    T. Zenker, H. Fischer, C. Nikitas, U. Parchatka, G.W. Harris, D. Mihelcic, P. Musgen, H.W. Patz, M. Schultz, A. Volz-Thomas, R. Schmitt, T. Behmann, M. Weissenmayer, J.P. Burrows, J. Geophys. Res. Atmos. 103, 13615 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    R. Sur, T.J. Boucher, M.R. Renfro, B.M. Cetegen, J. Electrochem. Soc. 157(1), B45 (2010)CrossRefGoogle Scholar
  14. 14.
    K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Ortwein, W. Woiwode, S. Fleck, M. Eberhard, T. Kolb, S. Wagner, M. Gisi, V. Ebert, Exp. Fluids 49, 961 (2010)CrossRefGoogle Scholar
  16. 16.
    J.B. Jeffries, A. Fahrland, W. Min, R.K. Hanson, D. Sweeney, D. Wagner, K. J. Whitty, Pittsburgh Coal Conference, September (2009)Google Scholar
  17. 17.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)CrossRefGoogle Scholar
  19. 19.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    R. Arndt, J. Appl. Phys. 36, 2522 (1965)ADSCrossRefGoogle Scholar
  22. 22.
    P. Kluczynski, O. Axner, Appl. Opt. 38, 5803 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    K. Sun, X. Chao, R. Sur, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 110, 497 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    J. Humlicek, J. Quant. Spectrosc. Radiat. Transf. 27(4), 437 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009). The HITRAN database, available at Google Scholar
  26. 26.
    M.P. Arroyo, R.K. Hanson, Appl. Opt. 32(30), 6104 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    M.W. Chase Jr., JANAF-NIST thermochemical tables. J. Phys. Chem. Ref. data: Monograph No. 9 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ritobrata Sur
    • 1
  • Kai Sun
    • 1
  • Jay B. Jeffries
    • 1
  • Ronald K. Hanson
    • 1
  1. 1.High Temperature Gas dynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations