Applied Physics B

, Volume 112, Issue 3, pp 287–306 | Cite as

A data set for validation of models of laser-induced incandescence from soot: temporal profiles of LII signal and particle temperature

  • Fabien Goulay
  • Paul E. Schrader
  • Xerxes López-Yglesias
  • Hope A. Michelsen
Article

Abstract

We measured spectrally and temporally resolved laser-induced incandescence signals from flame-generated soot at laser fluences of 0.01–3.5 J/cm2 and laser wavelengths of 532 and 1,064 nm. We recorded LII temporal profiles at 681.8 nm using a fast-gated detector and a spatially homogeneous and temporally smooth laser profile. Time-resolved emission spectra were used to identify and avoid spectral interferences and to infer soot temperatures. Soot temperatures reach a maximum of 4,415 ± 65 K at fluences ≥0.2 J/cm2 at 532 nm and 4,424 ± 80 K at fluences ≥0.3 J/cm2 at 1,064 nm. These temperatures are consistent with the sublimation temperature of C2 of 4,456.59 K. At fluences above 0.5 J/cm2 at 532 nm, the measured spectra yield an apparent higher temperature after the soot has fully vaporized but well within the laser pulse. This apparent temperature elevation at high fluence is explained by fluorescence interferences from molecules present in the flame. We also measured 3-color LII temporal profiles at detection wavelengths of 451.5, 681.8, and 854.8 nm. The temperatures inferred from these measurements agree well with those measured using spectrally resolved LII. The data discussed in this manuscript are archived as electronic supplementary material.

Keywords

Soot Particle High Fluences Soot Volume Fraction Planck Function Soot Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank László Nemes for his valuable comments on the manuscript. We also thank Daniel Strong for the rendition of the experimental setup shown in Fig. 1. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000.

Supplementary material

340_2013_5504_MOESM1_ESM.txt (9.8 mb)
Supplementary material 1 (TXT 10001 kb)
340_2013_5504_MOESM2_ESM.txt (9.6 mb)
Supplementary material 2 (TXT 9857 kb)
340_2013_5504_MOESM3_ESM.txt (10.9 mb)
Supplementary material 3 (TXT 11137 kb)
340_2013_5504_MOESM4_ESM.txt (10.8 mb)
Supplementary material 4 (TXT 11049 kb)
340_2013_5504_MOESM5_ESM.txt (10.8 mb)
Supplementary material 5 (TXT 11039 kb)
340_2013_5504_MOESM6_ESM.txt (10.9 mb)
Supplementary material 6 (TXT 11132 kb)
340_2013_5504_MOESM7_ESM.txt (10.9 mb)
Supplementary material 7 (TXT 11128 kb)
340_2013_5504_MOESM8_ESM.txt (10.8 mb)
Supplementary material 8 (TXT 11093 kb)

References

  1. 1.
    H. Horvath, J. Environ. Radioact. 51, 5 (2000)CrossRefGoogle Scholar
  2. 2.
    U.P. Kodavanti, C.F. Moyer, A.D. Ledbetter, M.C. Schladweiler, D.L. Costa, R. Hauser, D.C. Christiani, A. Nyska, Toxicol. Sci. 71, 237 (2003)CrossRefGoogle Scholar
  3. 3.
    R.J. Santoro, C.R. Shaddix, Laser-induced incandescence, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002), p. 252Google Scholar
  4. 4.
    C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    J. Reimann, S.A. Kuhlmann, S. Will, Appl. Phys. B 96, 583 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    M.W. Chase Jr., J. Phys. Chem. Ref. Data, Monograph 9 14, 535 (1998)Google Scholar
  8. 8.
    S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44, 7414 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000)CrossRefGoogle Scholar
  10. 10.
    F. Goulay, P.E. Schrader, L. Nemes, M.A. Dansson, H.A. Michelsen, Proc. Combust. Inst. 32, 963 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Commodo, S. Violi, A. D’Anna, A. D’Alessio, C. Allouis, F. Beretta, P. Minutolo, Combust. Sci. Technol. 179, 387 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Hayashida, K. Amagai, K. Satoh, M. Arai, J. Eng. Gas Turbines Power 128, 241 (2006)CrossRefGoogle Scholar
  14. 14.
    R.L. Vander Wal, K.A. Jensen, M.Y. Choi, Combust. Flame 109, 399 (1997)CrossRefGoogle Scholar
  15. 15.
    R.L. Vander Wal, K.J. Weiland, Appl. Phys. B 59, 445 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    R.L. Vander Wal, Appl. Opt. 35, 6548 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    E.A. Rohlfing, J. Chem. Phys. 89, 6103 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    C.J. Damm, D. Lucas, R.F. Sawyer, C.P. Koshland, Proc. Combust. Inst. 29, 2767 (2002)CrossRefGoogle Scholar
  19. 19.
    R.L. Vander Wal, Combust. Sci. Technol. 126, 333 (1997)CrossRefGoogle Scholar
  20. 20.
    F. Goulay, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 96, 613 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Dansson, M. Boisselle, M.A. Linne, H.A. Michelsen, Appl. Opt. 46, 8095 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    G. Anstett, M. Nittmann, A. Borsutzky, R. Wallenstein, Appl. Phys. B 76, 833 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    A. Caprara, G.C. Reali, Opt. Quantum Elect. 24, S1001 (1992)CrossRefGoogle Scholar
  24. 24.
    A. Caprara, G.C. Reali, Opt. Lett. 17, 414 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42, 5577 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 96, 645 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    B. Quay, T.-W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97, 384 (1994)CrossRefGoogle Scholar
  29. 29.
    C.R. Shaddix, K.C. Smyth, Combust. Flame 107, 418 (1996)CrossRefGoogle Scholar
  30. 30.
    D. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Proc. 34th Nat. Heat Transfer Conf. NHTC2000 (2000)Google Scholar
  31. 31.
    J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 26, 2387 (1996)Google Scholar
  32. 32.
    T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro, Appl. Opt. 34, 7083 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    N.P. Tait, D.A. Greenhalgh, Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)CrossRefGoogle Scholar
  34. 34.
    C. Allouis, A. D’Alessio, C. Noviello, F. Beretta, Combust. Sci. Technol. 153, 51 (2000)CrossRefGoogle Scholar
  35. 35.
    J. Delhay, Y. Bouvier, E. Therssen, J.D. Black, P. Desgroux, Appl. Phys. B 81, 181 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973)CrossRefGoogle Scholar
  38. 38.
    F. Goulay, L. Nemes, P.E. Schrader, H.A. Michelsen, Mol. Phys. 108, 1013 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    C. Schoemaecker-Moreau, E. Therssen, X. Mercier, J.F. Pauwels, P. Desgroux, Appl. Phys. B 78, 485 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    R. Puri, T.F. Richardson, R.J. Santoro, R.A. Dobbins, Combust. Flame 92, 320 (1993)CrossRefGoogle Scholar
  42. 42.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291 (1999)CrossRefGoogle Scholar
  43. 43.
    C.M. Megaridis, R.A. Dobbins, Combust. Sci. Technol. 66, 1 (1989)CrossRefGoogle Scholar
  44. 44.
    R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254 (1987)CrossRefGoogle Scholar
  45. 45.
    R.J. Santoro, J.H. Miller, Langmuir 3, 244 (1987)CrossRefGoogle Scholar
  46. 46.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969)Google Scholar
  47. 47.
    J.C. Ku, K.-H. Shim, J. Quant. Spectrosc. Radiat. Transfer 47, 201 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    J.C. Ku, K.-H. Shim, J. Heat Transfer 113, 953 (1991)CrossRefGoogle Scholar
  49. 49.
    K.A. Fuller, W.C. Malm, S.M. Kreidenweis, J. Geophys. Res. 104, 15 (1999)CrossRefGoogle Scholar
  50. 50.
    A. Boiarciuc, F. Foucher, C. Mounaïm-Rousselle, Appl. Phys. B 83, 413 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96, 657 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    S. di Stasio, P. Massoli, Meas. Sci. Technol. 5, 1453 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 48, 2175 (2010)CrossRefGoogle Scholar
  56. 56.
    F.J. Weinberg, Optics of Flames (Butterworths, London, 1963)Google Scholar
  57. 57.
    D. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38, 2478 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Proc. Combust. Inst. 31, 869 (2007)CrossRefGoogle Scholar
  59. 59.
    H. Chang, T.T. Charalampopoulos, Proc. R. Soc. London, A 430, 577 (1990)ADSCrossRefGoogle Scholar
  60. 60.
    D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004)CrossRefGoogle Scholar
  61. 61.
    S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transfer 123, 331 (2001)CrossRefGoogle Scholar
  62. 62.
    J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Appl. Phys. B 104, 253 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    Ü.Ö. Köylü, Combust. Flame 109, 488 (1996)CrossRefGoogle Scholar
  64. 64.
    Ü.Ö. Köylü, G.M. Faeth, J. Heat Transfer 118, 415 (1996)CrossRefGoogle Scholar
  65. 65.
    S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transfer 122, 517 (2000)CrossRefGoogle Scholar
  66. 66.
    M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, O.W. Schöck, J. Aerosol Sci. 34, 1421 (2003)CrossRefGoogle Scholar
  67. 67.
    F. Goulay, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 100, 655 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    Z.G. Habib, P. Vervisch, Combust. Sci. Technol. 59, 261 (1988)CrossRefGoogle Scholar
  69. 69.
    G. Cléon, T. Amodeo, A. Faccinetto, P. Desgroux, Appl. Phys. B 104, 297 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B 89, 417 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    H.A. Michelsen, P.E. Schrader, F. Goulay, Carbon 50, 740 (2012)CrossRefGoogle Scholar
  72. 72.
    A. Leipertz, F. Ossler, M. Aldén, Polycyclic aromatic hydrocarbons and soot diagnostics by optical techniques, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002), p. 359Google Scholar
  73. 73.
    K.C. Smyth, C.R. Shaddix, D.A. Everest, Combust. Flame 111, 185 (1997)CrossRefGoogle Scholar
  74. 74.
    M. Alfè, B. Apicella, A. Tregrossi, A. Ciajolo, Carbon 46, 2059 (2008)CrossRefGoogle Scholar
  75. 75.
    D. Eastwood, R.L. Lidberg, M.S. Dresselhaus, Chem. Mater. 6, 211 (1994)CrossRefGoogle Scholar
  76. 76.
    F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 465 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 479 (2001)ADSCrossRefGoogle Scholar
  78. 78.
    F. Migliorini, S. De Iuliis, G. Zizak, Combust. Flame 153, 384 (2008)CrossRefGoogle Scholar
  79. 79.
    P. Desgroux, X. Mercier, K.A. Thomson, Proc. Combust. Inst. 34, 1713 (2013)CrossRefGoogle Scholar
  80. 80.
    H.A. Michelsen, Appl. Phys. B 83, 443 (2006)ADSCrossRefGoogle Scholar
  81. 81.
    P.O. Witze, S. Hochgreb, D. Kayes, H.A. Michelsen, C.R. Shaddix, Appl. Opt. 40, 2443 (2001)ADSCrossRefGoogle Scholar
  82. 82.
    H.A. Michelsen, A.V. Tivanski, M.K. Gilles, L.H. van Poppel, M.A. Dansson, P.R. Buseck, Appl. Opt. 46, 959 (2007)ADSCrossRefGoogle Scholar
  83. 83.
    C.J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B.D. Patterson, T.B. Settersten, Proc. Combust. Inst. 33, 831 (2011)CrossRefGoogle Scholar

Copyright information

© Springer (outside the USA) 2013

Authors and Affiliations

  • Fabien Goulay
    • 1
    • 2
  • Paul E. Schrader
    • 1
  • Xerxes López-Yglesias
    • 1
  • Hope A. Michelsen
    • 1
  1. 1.Combustion Research Facility Sandia National LaboratoriesLivermoreUSA
  2. 2.Department of ChemistryWest Virginia UniversityMorgantownUSA

Personalised recommendations