Applied Physics B

, Volume 113, Issue 3, pp 307–315 | Cite as

Laser-based dynamic evaporation and surface shaping of fused silica with assist gases: a path to rimless laser machining

  • S. ElhadjEmail author
  • M. J. Matthews
  • G. M. Guss
  • I. L. Bass


Evaporation and ablation are fundamental processes which drive laser-material processing performance. In applications where surface shape is important, control of the temperature field and the resulting spatially varying material response must be considered. For that purpose, assist gases are useful in, first, lowering treatment temperatures and, second, in changing interfacial and bulk chemistry to limit capillary-driven flow. Additionally, laser-matter coupling is influenced by pulse length as it determines the heat affected zone. Using infrared imaging of CO2 laser-heated fused silica and surface profile measurements, we derive temperature and time dependent pitting rates along with shapes for a range of gases that include hydrogen, nitrogen, air, and helium. In the range of 1,500–4,500 K, evaporation, flow, and densification are shown to contribute to the pit shape. Analysis reveals a strong and complex dependence of rim formation on heating time and gas chemistry, mostly by lowering treatment temperature. Under dynamic heating, chemicapillarity appears to help in lowering rim height, in spite of the reactants mass transport limitations. Results on this gas-assisted approach suggest the possibility for sub-nanometer “rimless” laser-based machining.


Fuse Silica Evaporation Rate Etch Rate Pulse Length Laser Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.


  1. 1.
    T.A. Laurence, J.D. Bude, S. Ly et al., Opt. Express 20, 11561 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    I.L. Bass, V.G. Draggoo, G.M. Guss et al., High-Power Laser Ablation VI 6261, A2612 (2006)Google Scholar
  3. 3.
    I.L. Bass, G.M. Guss, M.J. Nostrand et al., Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 2010Google Scholar
  4. 4.
    A.F.H. Kaplan, J. Appl. Phys. 79, 2198 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    S. Elhadj, M.J. Matthews, S.T. Yang et al., Opt. Express 20, 1575 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    H.L. Schick, Chem. Rev. 60, 331 (1960)CrossRefGoogle Scholar
  7. 7.
    M.J. Matthews, I.L. Bass, G.M. Guss et al., Presented at the Laser-Induced Damage in Optical Materials Boulder, CO, USA, 2007 (unpublished)Google Scholar
  8. 8.
    C. Korner, R. Mayerhofer, M. Hartmann et al., Appl. Phys. A Matter. 63, 123 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    V. Semak, A. Matsunawa, J. Phys. D Appl. Phys. 30, 2541 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    V.V. Semak, B. Damkroger, S. Kempka, J. Phys. D Appl. Phys. 32, 1819 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    N.M. Bulgakov, A.V. Bulgakova, Appl. Phys. A Matter. 73, 199 (2001)Google Scholar
  12. 12.
    W.D. Kingery, J. Am. Ceram. Soc. 42, 6 (1959)CrossRefGoogle Scholar
  13. 13.
    N.M. Parikh, J. Am. Ceram. Soc. 41, 18 (1958)CrossRefGoogle Scholar
  14. 14.
    S.C. Chen, D.G. Cahill, C.P. Grigoropoulos, J. Heat Trans. T ASME 122, 107 (2000)CrossRefGoogle Scholar
  15. 15.
    T.J. Mcneil, R. Cole, R.S. Subramanian, J. Am. Ceram. Soc. 68, 254 (1985)CrossRefGoogle Scholar
  16. 16.
    N. Shen, M.J. Matthews, J.E. Fair et al., Appl. Surf. Sci. 256, 4031 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R. Bruckner, J. Non-Cryst Solids 5, 123 (1970)ADSCrossRefGoogle Scholar
  18. 18.
    R. Brückner, J. Non-Cryst Solids 5, 123 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    J.E. Shelby, J. Non-Cryst Solids 349, 331 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    R.H. Doremus, J. Appl. Phys. 92, 7619 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    S.T. Yang, M.J. Matthews, S. Elhadj et al., J. Appl. Phys. 106, 103106 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    S. Elhadj, M.J. Matthews, S.T. Yang et al., Laser-Induced Damage in Optical Materials: Proceedings, Boulder, CO, 2009Google Scholar
  23. 23.
    S. Elhadj, M.J. Matthews, S.T. Yang et al., Appl. Phys. Lett. 96, 071110 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    S. Elhadj, S.R. Qiu, A.M. Monterrosa et al., J. Appl. Phys. 111, 093113 (2012)Google Scholar
  25. 25.
    J.E. Shelby, J. Appl. Phys. 51, 2589 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    G.A. Parks, J. Geophys. Res. 89, 3997 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    V. Zandian, J.S. Florry, D. Taylor, Br. Ceram. Trans. J. 90, 59 (1991)Google Scholar
  28. 28.
    V. Lou, R. Sato, M. Tomozawa, J. Non-Cryst Solids 315, 13 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    A. Ben-Yakar, A. Harkin, J. Ashmore et al., J. Phys. D Appl. Phys. 40, 1447 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer (outside the USA) 2013

Authors and Affiliations

  • S. Elhadj
    • 1
    Email author
  • M. J. Matthews
    • 1
  • G. M. Guss
    • 1
  • I. L. Bass
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations