Applied Physics B

, Volume 113, Issue 2, pp 291–297 | Cite as

Interferometric selection of frequency comb modes

  • C. Perrella
  • P. S. Light
  • J. D. Anstie
  • F. N. Baynes
  • A. N. Luiten
Article

Abstract

We demonstrate a scheme to split an optical frequency comb into four separate frequency combs, each with four times the repetition rate of the original, but which are offset in frequency from each other. These spectrally rarified “daughter” combs are generated using fibre interferometers that are actively stabilised. We describe how these “daughter” combs can be used to resolve ambiguities that occur when comparing an arbitrary frequency continuous-wave signal against an optical frequency comb.

Keywords

Pulse Train Frequency Comb Optical Frequency Comb Beat Note Auxiliary Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the Australian Research Council for supporting this research under the Grants DP0877938, FT0991631 and DP1094500.

References

  1. 1.
    R. Holzwarth, T. Udem, T. Hansch, J. Knight, W. Wadsworth, P. Russell, Optical frequency synthesiser for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Diddams, L. Hollberg, V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007)CrossRefGoogle Scholar
  4. 4.
    T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R.S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S.A. Diddams, Optical frequency synthesis and comparison with uncertainty at the 10(−19) level. Science 303, 1843–1845 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    S.A. Diddams, T. Udem, J.C. Bergquist, E.A. Curtis, R.E. Drullinger, L. Hollberg, W.M. Itano, W.D. Lee, C.W. Oates, K.R. Vogel, D.J. Wineland, An optical clock based on a single trapped 199Hg+ ion. Sci. Agric. 293, 825–828 (2001)Google Scholar
  7. 7.
    H.S. Margolis, G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, P. Gill, Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion. Science 306, 1355–1358 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Jiang, C.-B. Huang, D.E. Leaird, A.M. Weiner, Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat. Photonics 1, 463–467 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1961 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Kirchner, D.A. Braje, T.M. Fortier, A.M. Weiner, L. Hollberg, S.A. Diddams, Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication. Opt. Lett. 34, 872–874 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A. Bartels, D. Heinecke, S.A. Diddams, 10-GHz self-referenced optical frequency comb. Science 326, 681 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    A.R. Johnson, Y. Okawachi, J.S. Levy, J. Cardenas, K. Saha, M. Lipson, A.L. Gaeta, Chip-based frequency combs with sub-100 GHz repetition rates. Opt. Lett.. Lett. 37, 875–877 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J. Jost, J. Hall, J. Ye, Continuously tunable, precise, single frequency optical signal generator. Opt. Express 10, 515–520 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    T.R. Schibli, K. Minoshima, E.L. Hong, H. Inaba, Y. Bitou, A. Onae, H. Matsumoto, Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb. Opt. Lett. 30, 2323–2325 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    B. Washburn, S. Diddams, N. Newbury, J. Nicholson, M. Yan, C. Jorgensen, Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. Opt. Lett. 29, 250–252 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R.T. Holzwarth, J. Kippenberg, Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    T. Kippenberg, R. Holzwarth, S. Diddams, Microresonator-based optical frequency combs. Science 331, 555–559 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    D. Kielpinski, O. Gat, Phase-coherent repetition rate multiplication of a mode-locked laser from 40 MHz to 1 GHz by injection locking. Opt. Express 20, 2717–2724 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    S.A. Diddams, M.S. Kirchner, T. Fortier, D.A. Braje, A. M. Weiner, L. Hollberg, Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb. Opt. Express 17, 3331–3340 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J. Chen, J.W. Sickler, P. Fendel, E.P. Ippen, F.X. Kärtner, T. Wilken, R. Holzwarth, T.W. Hänsch, Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication. Opt. Lett. 33, 959–961 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    M.T. Murphy, C.R. Locke, P.S. Light, A.N. Luiten, J.S. Lawrence, Laser frequency comb techniques for precise astronomical spectroscopy. Mon. Not. R. Astron. Soc. 422, 761–771 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    M.Y. Sander, S. Frolov, J. Shmulovich, E.P. Ippen, F.X. Kärtner, 10 GHz femtosecond pulse interleaver in planar waveguide technology. Opt. Express 20, 4102–4113 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    A. Haboucha, W. Zhang, T. Li, M. Lours, A.N. Luiten, Y. Le Coq, G. Santarelli, Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt. Lett. 36, 3654–3656 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    S.-S. Min, Y. Zhao, S. Fleming, Repetition rate multiplication in figure-eight fibre laser with 3dB couplers. Opt. Commun. 277, 411–413 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    T. Fortier, M. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. Oates, S. Diddams, Generation of ultrastable microwaves via optical frequency division. Nat. Photonics 5,425–429 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    H. Inaba, T. Ikegami, F.-L. Hong, A. Onae, Y. Koga, T. Schibli, K. Minoshima, H. Matsumoto, S. Yamadori, O. Tohyama, S.-I. Yamaguchi, Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis. IEEE J. Quantum Elect. 40, 929–936 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Y.-J. Kim, Y. Kim, B.J. Chun, S. Hyun, S.-W. Kim, All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser. Opt. Express 17,10939–10945 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    B. Washburn, R. Fox, N. Newbury, J. Nicholson, K. Feder, P. Westbrook, C. Jørgensen, Fiber-laser-based frequency comb with a tunable repetition rate. Opt. Express 12, 4999–5004 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    F.R. Giorgetta, I. Coddington, E. Baumann, W.C. Swann, N.R. Newbury, Fast high-resolution spectroscopy of dynamic continuous-wave laser sources. Nat. Photonics 4, 853–857 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    H. Jiang, J. Taylor, F. Quinlan, T. Fortier, S.A. Diddams, Noise floor reduction of an Er: fiber laser-based photonic microwave generator. IEEE Photon. J. 3, 1004–1012 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Jiang, J. Taylor, F. Quinlan, T. Fortier, S. A. Diddams, Noise floor reduction of an Er: fiber laser-based photonic microwave generator. IEEE Photon. J. 3, 1004–1012 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    A. Seigman, Lasers. (University Science Books, Mill Valley, 1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Perrella
    • 1
    • 2
  • P. S. Light
    • 1
    • 2
  • J. D. Anstie
    • 1
    • 2
  • F. N. Baynes
    • 1
  • A. N. Luiten
    • 1
    • 2
  1. 1.School of PhysicsUniversity of Western AustraliaCrawleyAustralia
  2. 2.Institute for Photonics and Advanced Sensing (IPAS) and the School of Chemistry and PhysicsThe University of AdelaideAdelaideAustralia

Personalised recommendations