Applied Physics B

, Volume 113, Issue 1, pp 125–131 | Cite as

Dual-wavelength diode-pumped laser operation of N p-cut and N g-cut Tm:KLu(WO4)2 crystals

  • Martha Segura
  • Xavier Mateos
  • Maria Cinta Pujol
  • Joan Josep Carvajal
  • Magdalena Aguiló
  • Francesc Díaz
  • Uwe Griebner
  • Valentin Petrov


Simultaneous continuous-wave laser oscillation at two wavelengths has been observed and studied in a diode-pumped monoclinic N p-cut Tm:KLu(WO4)2 for different transmission of the output coupler. The maximum output power reached 1.15 W with a slope efficiency of 20.4 % with respect to the absorbed power for polarization parallel to the N m optical axis. In an analogous N g-cut crystal, the dual-wavelength laser operation is accompanied by polarization switching with increasing pump power and the switching point depends on the output coupling. The thresholds are slightly higher, and the slope efficiency reached a maximum of 25.5 % for polarization parallel to N m at low pump levels, but at high pump levels, the oscillating polarization is parallel to N p, reaching maximum output power of 3.09 W. Simple modelling with rate equations taking into account reabsorption losses explains qualitatively the complex behavior observed in the continuous-wave laser experiments with this anisotropic biaxial laser crystal.


Slope Efficiency Polarization Switching Absorb Pump Power Polarization Parallel GdVO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Spanish Government under projects MAT2010-11402-E, MAT2011-29255-C02-02, TEC2010-21574-C02-02, PI09/90527, DE2009-0002, and by the Generalitat de Catalunya under project 2009SGR235. It has been partially funded by the European Commission within the Seventh Framework Programme, under projects Cleanspace, FP7-SPACE-2010-1–GA-263044 and LASERLAB-EUROPE, Grant agreement No. 228334 and the German-Spanish bilateral Programme Acciones Integradas (ID 50279160). M. Segura acknowledges the Generalitat de Catalunya through the fellowship 2011FI_B2 00013 and the Spanish Ministry of Education through the student mobility program, TME2009-00420.


  1. 1.
    BJ. Orr, “Infrared LIDAR applications in atmospheric monitoring”, Encyclopedia of analytical chemistry, R. A. Meyers (ed.), John Wiley and Sons Ltd (2006)Google Scholar
  2. 2.
    Z. Luo, Z. Yuan, Y. Pan, C. Du, Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging. Opt. Lett. 34, 1480–1482 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    A. Brenier, Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3 + :KGd(WO4)2 laser with chirped volume Bragg gratings. Las. Phys. Lett. 8, 520–524 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    K.L. Vodopyanov, Optical THz-wave generation with periodically-inverted GaAs. Laser Photon. Rev. 2, 11–25 (2008)CrossRefGoogle Scholar
  5. 5.
    B.M. Walsh, Dual wavelength lasers. Laser Phys. 20, 622–634 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Y.F. Chen, CW dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser. Appl. Phys. B 70, 475–478 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    L. Chen, Z. Wang, S. Zhuang, H. Yu, Y. Zhao, L. Guo, X. Xu, Dual-wavelength Nd:YAG crystal laser at 1,074 and 1,112 nm. Opt. Lett. 36, 2554–2556 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    W.Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, M. Kokta, Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5012. Appl. Phys. Lett. 51, 1218–1220 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    J. Liu, H. Zhang, X. Mateos, W. Han, V. Petrov, Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal. Opt. Lett. 33, 1810–1812 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J. Liu, W. Han, H. Zhang, X. Mateos, V. Petrov, Comparative study of high-power continuous-wave laser performance of Yb-doped vanadate crystals. IEEE J. Quantum Electron. 45, 807–815 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    J. Liu, W. Han, H. Zhang, H. Yang, V. Petrov, Study of the optical bistability in the laser oscillation of Yb:GdVO4 crystal. Appl. Phys. B 98, 87–91 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J. Liu, H. Yang, H. Zhang, J. Wang, V. Petrov, Anisotropy in laser performance of Yb:GdCa4O(BO3)3 crystal. Appl. Opt. 47, 5436–5441 (2008)Google Scholar
  13. 13.
    V. Jambunathan, A. Schmidt, X. Mateos, M.C. Pujol, J.J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, Continuous-wave co-lasing in a monoclinic co-doped (Ho, Tm):KLu(WO4)2 crystal. Laser Phys. Lett. 8, 799–803 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    W.P. Risk, Modelling of longitudinally pumped solid-state lasers exhibiting reabsorption losses. J. Opt. Soc. Am. B 5, 1412–1423 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    T.Y. Fan, R.L. Byer, Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser. IEEE J. Quantum Electron. 23, 605–612 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    R.C. Stoneman, L. Esterowitz, Efficient 1.94-μm Tm:YALO laser. IEEE J. Sel. Top. Quantum Electron. 1, 78–81 (1995)CrossRefGoogle Scholar
  17. 17.
    M.J.D. Esser, D. Preussler, E.H. Bernhardi, C. Bollig, M. Posewang, Diode-end-pumped Tm:GdVO4 laser operating at 1,818 and 1,915 nm. Appl. Phys. B 97, 351–356 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    V. Petrov, M.C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R.M. Solé, J. Liu, U. Griebner, F. Díaz, Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host. Laser Photon. Rev. 1, 179–212 (2007)CrossRefGoogle Scholar
  19. 19.
    X. Mateos, V. Jambunathan, M.C. Pujol, J.J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, V. Petrov, CW lasing of Ho in KLu(WO4)2 in-band pumped by a diode-pumped Tm:KLu(WO4)2 laser. Opt. Exp. 18, 20793–20798 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M.C. Pujol, X. Mateos, A. Aznar, X. Solans, S. Suriñach, J. Massons, F. Díaz, M. Aguiló, Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2. J. Appl. Cryst. 39, 230–236 (2006)CrossRefGoogle Scholar
  21. 21.
    O. Silvestre, M.C. Pujol, M. Rico, F. Güell, M. Aguiló, F. Díaz, Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy. App. Phys. B 87, 707–716 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    X. Mateos, V. Petrov, J. Liu, M.C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, G. Viera, Efficient 2-μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2. IEEE J. Quantum Electron. 42, 1008–1015 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    M. Segura, M. Kadankov, X. Mateos, M.C. Pujol, J.J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, Polarization switching in the 2-μm Tm:KLu(WO4)2 laser. Laser Phys. Lett. 9, 104–109 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    E.C. Honea, R.J. Beach, S.B. Sutton, J.A. Speth, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.A. Payne, 115-W Tm:YAG diode-pumped solid-state laser. IEEE J. Quantum Electron. 33, 1592–1599 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martha Segura
    • 1
  • Xavier Mateos
    • 1
  • Maria Cinta Pujol
    • 1
  • Joan Josep Carvajal
    • 1
  • Magdalena Aguiló
    • 1
  • Francesc Díaz
    • 1
  • Uwe Griebner
    • 2
  • Valentin Petrov
    • 2
  1. 1. Física i Cristal·lografía de Materials i Nanomaterials (FiCMA-FiCNA-EMaS)Universitat Rovira i Virgili (URV)TarragonaSpain
  2. 2.Max-Born-Institute for Nonlinear Optics and Short Pulse SpectroscopyBerlinGermany

Personalised recommendations