Advertisement

Applied Physics B

, Volume 113, Issue 1, pp 107–114 | Cite as

Polarization-independent beam splitting by a photonic crystal right prism

  • Melike B. Yucel
  • Ahmet Cicek
  • Bulent Ulug
Article

Abstract

Splitting of light waves by a two-dimensional photonic crystal associated with source size and dispersion relation of photonic crystal at a wavelength of 1,550 nm without disturbing periodicity is numerically demonstrated via finite-difference time-domain simulations. Split branches in either polarization state make plus or minus 45° with the [11] direction and propagate in a self-collimated manner with equal amplitude and phase. Sixty-four percent of total transmittance is attained provided that the waves are coupled and collected through appropriate planar waveguides. Alternatively, approximately 50 % total transmittance for both polarizations can be obtained by application of an anti-reflection coating layer at the input face. Polarization-independent beam splitting occurs in a narrow range around the target wavelength, while its transverse-magnetically polarized sub-harmonic can also be split. The photonic crystal can also operate as a polarizing splitter at oblique incidence.

Keywords

Photonic Crystal Beam Splitting Transverse Magnetic Transverse Electric Planar Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Zhao, J. Zhang, P. Yao, X. Jiang, X. Chen, Photonic crystal Mach-Zehnder interferometer based on self-collimation. Appl. Phys. Lett. 90(23), 231114 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    D.W. Prather, S. Shi, J. Murakowski, G.J. Schneider, A. Sharkawy, C. Chen, B. Miao, R. Martin, Self-collimation in photonic crystal structures: a new paradigm for applications and device development. J. Phys. D: Appl. Phys. 40(9), 2635–2651 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J. Yonekura, M. Ikeda, T. Baba, Analysis of finite 2D photonic crystals of columns and lightwave devices using the scattering matrix method. J. Lightwave Technol. 17(8), 1500–1508 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    R.W. Ziolkowski, M. Tanaka, FDTD analysis of PBG waveguides. power splitters and switches. Opt. Quant. Electron. 31(9), 843–855 (1999)CrossRefGoogle Scholar
  5. 5.
    T. Søndergaard, K.H. Dridi, Energy flow in photonic crystal waveguides. Phys. Rev. B 61, 15688–15696 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    D. Yang, H. Tian, Y. Ji, High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends. Optics Commun. 285(18), 3752–3757 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Bayindir, B. Temelkuran, E. Ozbay, Photonic-crystal-based beam splitters. Appl. Phys. Lett. 77(24), 3902 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    I. Park, H.-S. Lee, H.-J. Kim, K.-M. Moon, S.-G. Lee, O. Beom-Hoan, S.-G. Park, E.-H. Lee, Photonic crystal power-splitter based on directional coupling. Opt. Express 12(15), 3599–3604 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    D.C. Tee, T. Kambayashi, S.R. Sandoghchi, N. Tamchek, F. Rafiq, M. Adikan, Efficient, wide angle, structure tuned 1x3 photonic crystal power splitter at 1550 nm for triple play applications. J. Lightwave Technol. 30(17), 2818–2823 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, Y. Fu, Multiple beam splitting to free space from a V groove in a photonic crystal waveguide. Appl. Phys. B Lasers Optics 102(4), 857–861 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    X. Yu, S. Fan, Bends and splitters for self-collimated beams in photonic crystals. Appl. Phys. Lett. 83(16), 3251 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Q.-Y. Zhu, Y.-Q. Fu, D.-Q. Hu, Z.-M. Zhang, A novel optical beam splitter based on photonic crystal with hybrid lattices. Chin. Phys. B 21(6), 064220 (2012)CrossRefGoogle Scholar
  13. 13.
    W.Y. Liang, J.W. Dong, H.Z. Wang, Directional emitter and beam splitter based on self-collimation effect. Opt. Express 15(3), 1234 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Xu, X.-J. Chen, S. Lan, Q. Guo, W. Hu, L.-J. Wu, The all-angle self-collimating phenomenon in photonic crystals with rectangular symmetry. J. Opt. A Pure Appl. Opt. 10(8), 085201 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    H. Kurt, M. Turduev, I.H. Giden, Crescent shaped dielectric periodic structure for light manipulation. Opt. Express 20(7), 7184–7194 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    V. Zabelin, L.A. Dunbar, N. Le Thomas, R. Houdré, M.V. Kotlyar, L. O’Faolain, T.F. Krauss, Self-collimating photonic crystal polarization beam splitter. Opt. Lett. 32(5), 530–532 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    E. Schonbrun, Q. Wu, W. Park, T. Yamashita, C.J. Summers, Polarization beam splitter based on a photonic crystal heterostructure. Opt. Lett. 31(21), 3104–3106 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    X. Shen, K. Han, X. Yang, H. Li, Polarization-independent self-collimating bends and beam splitters in photonic crystals. Chin Opt. Lett. 5(11), 662–664 (2007)ADSGoogle Scholar
  19. 19.
    M. Turduev, I.H. Giden, H. Kurt, Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs. J. Opt. Soc. Am. B 29(7), 1589–1598 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    G.Y. Dong, J. Zhou, X.L. Yang, L.Z. Cai, Dual-negative refraction in photonic crystals with hexagonal lattices. Opt. Exp. 19(13), 12119–12124 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Shen, J. Zhou (2011) Positive-negative birefraction phenomenon for TM polarization in annular photonic crystal. Chin. Opt. Lett. 9(2), 1–4Google Scholar
  22. 22.
    G.Y. Dong, J. Zhou, X.L. Yang, X. Meng, Multi-refraction with same polarization state in two dimensional triangular photonic crystals. Prog. Electromagn. Res. 128, 91–103 (2012)Google Scholar
  23. 23.
    I. De Leon, F. Roux, Fourier analysis of reflection and refraction in two-dimensional photonic crystals. Phys. Rev. B 71(23), 235105 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    A. Kim, K.B. Chung, J.W. Wu, Control of self-collimated Bloch waves by partially flat equifrequency contours in photonic crystals. Appl. Phys. Lett. 89(25), 251120 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    L. Xia, X. Wei, J. Yurong, Effect of source parameters on beam self-collimation in 2d photonic crystal. In Optical Fiber Communication and Optoelectronics Conference, 2007 Asia, pp. 469–471 (2007)Google Scholar
  26. 26.
    A.F. Matthews, S.K. Morrison, Y.S. Kivshar, Self-collimation and beam splitting in low-index photonic crystals. Opt. Commun. 279(2), 313–319 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A.F. Matthews, Experimental demonstration of self-collimation beaming and splitting in photonic crystals at microwave frequencies. Opt. Commun. 282(9), 1789–1792 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    S.-G. Lee, J.-S. Choi, J.-E. Kim, H.Y. Park, Reflection minimization at two-dimensional photonic crystal interfaces. Opt. Express 16(6), 4270–4277 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    T.-T. Kim, S.-G. Lee, M.-W. Kim, H.Y. Park, J.-E. Kim, Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures. Appl. Phys. Lett. 95(1), 011119 (2009)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Y. Wang, K. Deng, S. Xu, C. Qiu, H. Yang, Z. Liu, Applications of antireflection coatings in sonic crystal-based acoustic devices. Phys. Lett. A 375(10), 1348–1351 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J.-M. Park, S.-G. Lee, H.-R. Park, M.-H. Lee, Self-collimating photonic crystal antireflection structure for both TE and TM polarizations. Opt. Express 18(12), 13083 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    K.M. Ho, C.T. Chan, C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65(25), 3152–3155 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)ADSMATHGoogle Scholar
  34. 34.
    R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11(2), 215–234 (1967)MathSciNetADSCrossRefMATHGoogle Scholar
  35. 35.
    J.-P. Berrenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    A. Cicek, O.A. Kaya, B. Ulug, Acoustic beam splitting in a sonic crystal around a directional band gap. Chin. Phys. B (2013) submittedGoogle Scholar
  37. 37.
    X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, Y.-F. Chen, Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106(8), 084301 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceAkdeniz UniversityAntalyaTurkey
  2. 2.Department of Physics, Faculty of Arts and SciencesMehmet Akif Ersoy UniversityBurdurTurkey

Personalised recommendations