Applied Physics B

, Volume 112, Issue 4, pp 521–527 | Cite as

A picosecond near-infrared laser source based on a self-seeded optical parametric generator

  • Paul Kumar Upputuri
  • Haifeng WangEmail author


We report on the design and development of a new type of near-IR laser source. The source comprises of an optical parametric generator (OPG) and a second harmonic generator (SHG) pumped by an 80-MHz, 1064-nm, 7-ps Nd:YVO4 laser. The OPG is self-seeded with a fraction of its own signal output, which significantly enhances its conversion efficiency. The SHG doubles the frequency of OPG signal to produce a coherent output. The final output beam has a tunable wavelength near 800 nm, an average power of over 1 W, and a pulse duration around 5 ps. The M2-factor of the output beam can reach 1.1 after spatial filtering. With the new laser source, we have successfully demonstrated coherent anti-Stokes Raman scattering microscopy on 1 μm polystyrene beads, which shows that it has the potential to be a substitute for a picosecond optical parametric oscillator in certain microscopy or spectroscopy applications.


Pump Power Second Harmonic Generator Polarization Beam Splitter Second Harmonic Periodically Pole Lithium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NUS FoS Tier 1 Grant (R144000236133) and NUS Young Investigator Award (R144000284101).


  1. 1.
    B. Köhler, U. Bäder, A. Nebel, J.P. Meyn, R. Wallenstein, Appl. Phys. B 75, 31 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    W.D. Kulatilaka, T.N. Anderson, T.L. Bougher, R.P. Lucht, Appl. Phys. B 80, 669 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    M.J. Orozco-Arellanes, R.S. Cudney, Opt. Exp. 11, 20 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    M. Rahm, G. Anstett, J. Bartschke, T. Bauer, R. Beigang, R. Wallenstein, Appl. Phys. B 79, 535 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    D.H. Jundt, Opt. Lett. 22, 1553 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    J.-X. Cheng, X.S. Xie, J. Phys. Chem. B 108, 827 (2004)CrossRefGoogle Scholar
  7. 7.
    J.-X. Cheng, A. Volkmer, L.D. Book, X.S. Xie, J. Phys. Chem. B 105, 1277 (2001)CrossRefGoogle Scholar
  8. 8.
    G.W. Baxter, M.J. Johnson, J.G. Haub, B.J. Orr, Chem. Phys. Lett. 251, 211 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    F. Ganikhanov, S. Carrasco, X.S. Xie, Opt. Lett. 31, 1292 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M. Jurna, J.P. Korterik, H.L. Offerhaus, C. Otto, Appl. Phys. Lett. 89, 2511161 (2006)CrossRefGoogle Scholar
  11. 11.
    C.-Y. Chung, Y.-Y. Lin, K.-Y. Wu, W.-Y. Tai, S.-W. Chu, Y.-C. Lee, Y. Hwu, Y.-Y. Lee, Opt. Exp. 18, 6116 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    H. Chen, H. Wang, M.N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K.K. Buhman, J.-X. Cheng, Opt. Exp. 17, 1282 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A.-C. Chiang, T.-D. Wang, Y.-Y. Lin, C.-W. Lau, Y.-H. Chen, B.-C. Wong, Y.-C. Huang, J.-T. Shy, Y.-P. Lan, Y.-F. Chen, P.-H. Tsao, IEEE J. Quant. Electron 40, 791 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P.G. Schunemann, K.T. Zawilski, A. Tyazhev, V. Petrov, Opt. Lett. 37, 3219 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S.C. Kumar, M. Jelínek, M. Baudisch, K.T. Zawilski, P.G. Schunemann, V. Kubeček, J. Biegert, M. Ebrahim-Zadeh, Opt. Express 20, 15703 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Pu, J. Wu, M. Tsang, D. Psaltis, Appl. Phys. Lett. 91, 1311201 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceNational University of SingaporeSingaporeSingapore

Personalised recommendations