Applied Physics B

, Volume 113, Issue 1, pp 1–11 | Cite as

Experimental realization of strong effective magnetic fields in optical superlattice potentials

  • M. Aidelsburger
  • M. Atala
  • S. Nascimbène
  • S. Trotzky
  • Y.-A. Chen
  • I. Bloch
Article

Abstract

We present the experimental generation of large effective magnetic fields for ultracold atoms using photon-assisted tunneling in an optical superlattice. The underlying method does not rely on the internal structure of the atoms and, therefore, constitutes a general approach to realize widely tunable artificial gauge fields without the drawbacks of near-resonant optical potentials. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov–Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of one flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for non-interacting particles. We provide a local measurement of the phase acquired by single particles due to photon-assisted tunneling. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the effective magnetic field is directly revealed.

References

  1. 1.
    D. Tsui, H. Stormer, A. Gossard, Phys. Rev. Lett. 48, 1559 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    R. Laughlin, Phys. Rev. Lett. 50, 1395 (1983) Google Scholar
  3. 3.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    A. Fetter, Rev. Mod. Phys. A. 81, 647 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    N. Cooper, Adv. Phys. 57 (2008)Google Scholar
  6. 6.
    K. Madison, F. Chevy, W. Wohlleben, W. Dalibard, Phys. Rev. Lett. 84, 806 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    J. Abo-Shaeer, C. Raman, J. Vogels, W. Ketterle, Science. 292, 476 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    V. Schweikhard et al. Phys. Rev. Lett. 92, 40404 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    V. Bretin et al. Phys. Rev. Lett. 92, 50403 (2004)Google Scholar
  10. 10.
    N. Cooper, N. Wilkin, J. Gunn, Phys. Rev. Lett. 87, 120405 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Lin et al. Nature. 462, 628 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Ohberg Rev. Mod. Phys. 83, 1523–1543 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    D. Jaksch, P. Zoller, New J. Phys. 5, 56 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    F. Gerbier, J. Dalibard, New J. Phys. 12, 033007 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    E. Mueller, Phys. Rev. A 70, 041603 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    R.E. Peierls, Z. Phys. 80, 763 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    K. Jiménez-García et al. Phys. Rev. Lett. 108, 225303 (2012)Google Scholar
  19. 19.
    J. Struck, et al. Phys. Rev. Lett. 108, 225304 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    A. Eckardt, C. Weiss, M. Holthaus Phys. Rev. Lett. 95, 200401 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    A. Eckardt, M. Holthaus, Europhys. Lett. 80, 50004 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Y.-A. Chen et al. Phys. Rev. Lett. 107, 210405 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    A. Kolovsky, Europhys. Lett. 93, 20003 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    L. Lim, C. Smith, A. Hemmerich, Phys. Rev. Lett. 100, 130402 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    L. Lim, A. Hemmerich, C. Smith, Phys. Rev. A 81, 023404 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    G. Möller, N. Cooper, Phys. Rev. A 82, 063625 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, I. Bloch, Phys. Rev. Lett. 107, 255301 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A. Bermudez, T. Schaetz, D. Porras, Phys. Rev. Lett. 107, 150501 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    A. Bermudez, T. Schaetz, D. Porras, New J. Phys. 14, 053049 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    F. Grossmann, P. Hänggi, Europhys. Lett. 18, 571 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    M. Holthaus, Phys. Rev. Lett. 69, 351 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    P. Hauke et al. Phys. Rev. Lett. 109, 145301 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    C.E. Creffield, F. Sols, Europhys. Lett. 101, 40001 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    J. Sebby-Strabley, M. Anderlini, P.S. Jessen, J.V. Porto, Phys. Rev. A 73, 033605 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    S. Fölling et al. Nature (London) 448, 1029 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    E. Blount, Phys. Rev. 126, 1636 (1962)MathSciNetADSCrossRefMATHGoogle Scholar
  38. 38.
    Y. Wang, C. Gong, Phys. Rev. B 74, 193301 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    J. Struck et al. Science. 333, 996 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    F. Haldane, Phys. Rev. Lett. 61, 2015 (1988)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    P. Harper, Proc. Phys. Soc. Lond. Sect A 68, 874 (1955)ADSCrossRefMATHGoogle Scholar
  42. 42.
    N. Cooper, Phys. Rev. Lett. 106, 175301 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    N. Cooper, J. Dalibard, Europhys. Lett. 95, 66004 (2011)Google Scholar
  44. 44.
    D.A. Abanin, T. Kitagawa, I. Bloch, E. Demler, Phys. Rev. Lett. 110, 165304 (2013)Google Scholar
  45. 45.
    M. Atala, M. Aidelsburger, J.T. Barreiro, D.A. Abanin, T. Kitagawa, E. Demler, I. Bloch, arXiv:1212.0572 (2012) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Aidelsburger
    • 1
    • 2
  • M. Atala
    • 1
    • 2
  • S. Nascimbène
    • 1
    • 2
    • 3
  • S. Trotzky
    • 1
    • 2
    • 4
  • Y.-A. Chen
    • 1
    • 2
    • 5
  • I. Bloch
    • 1
    • 2
  1. 1.Fakultät für Physik Ludwig-Maximilians-UniversitätMunichGermany
  2. 2.Max-Planck-Institut für QuantenoptikGarchingGermany
  3. 3.Laboratore Kastler Brossel CNRS, UPMCParisFrance
  4. 4.Department of PhysicsUniversity of TorontoTorontoCanada
  5. 5.Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern PhysicsUniversity of Science and Technology of ChinaShanghaiChina

Personalised recommendations