Advertisement

Applied Physics B

, Volume 112, Issue 2, pp 143–152 | Cite as

Metamaterial polarization converter analysis: limits of performance

  • Dmitry L. Markovich
  • Andrei Andryieuski
  • Maksim Zalkovskij
  • Radu Malureanu
  • Andrei V. Lavrinenko
Article

Abstract

In this paper, we analyze the theoretical limits of a metamaterial-based converter with orthogonal linear eigenpolarizations that allow linear-to-elliptical polarization transformation with any desired ellipticity and ellipse orientation. We employ the transmission line approach providing a needed level of the design generalization. Our analysis reveals that the maximal conversion efficiency for transmission through a single metamaterial layer is 50 %, while the realistic reflection configuration can give the conversion efficiency up to 90 %. We show that a double layer transmission converter and a single layer with a ground plane can have 100 % polarization conversion efficiency. We tested our conclusions numerically reaching the designated limits of efficiency using a simple metamaterial design. Our general analysis provides useful guidelines for the metamaterial polarization converter design for virtually any frequency range of the electromagnetic waves.

Keywords

Conversion Efficiency Ground Plane Frequency Selective Surface Elliptical Polarization Polarization Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge P. U. Jepsen and A. Strikwerda for useful discussions. A. A. acknowledges financial support from the Danish Council for Technical and Production Sciences through the GraTer (11-116991) Project.

References

  1. 1.
    P.U. Jepsen, D.G. Cooke, M. Koch, Terahertz spectroscopy and imaging - modern techniques and applications. Laser Photonics Rev. 5(1), 124–166 (2011)CrossRefGoogle Scholar
  2. 2.
    T. Kleine-Ostmann, T. Nagatsuma, A review on terahertz communications research. J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011) CrossRefGoogle Scholar
  3. 3.
    M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    D. Molter, G. Torosyan, G. Ballon, L. Drigo, R. Beigang, Step-scan time-domain terahertz magneto-spectroscopy. Opt. Express 20(6), 26163–26168 (2012)CrossRefGoogle Scholar
  5. 5.
    J.B. Masson, G. Gallot, Terahertz achromatic quarter-wave plate. Opt. Lett. 31(2), 265–267 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    T. Arikawa, X. Wang, A.A. Belyanin, J. Kono, Giant tunable faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics. Opt. Express 20(17), 19484 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A.C. Strikwerda, K. Fan, H. Tao, D.V. Pilon, X. Zhang, R.D. Averitt, Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Opt. Express 17(1), 136–149 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    S.C. Saha, Y. Ma, J.P. Grant, A. Khalid, D.R.S. Cumming. Imprinted terahertz artificial dielectric quarter wave plates. Opt. Express 18(12), 12168–12175 (2010) CrossRefGoogle Scholar
  9. 9.
    A. Drezet, C. Genet, T. Ebbesen, Miniature plasmonic wave plates. Phys. Rev. Lett. 101(4), 1–4 (2008)CrossRefGoogle Scholar
  10. 10.
    J.Y. Chin, M. Lu, T.J. Cui, Metamaterial polarizers by electric-field-coupled resonators. Appl. Phys. Lett. 93(25), 251903 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    J.Y. Chin, J.N. Gollub, J.J. Mock, R. Liu, C. Harrison, D.R. Smith, T.J. Cui, An efficient broadband metamaterial wave retarder. Opt. Express 17(9), 7640–7647 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    X.G. Peralta, E.I. Smirnova, A.K. Azad, H.-T. Chen, A.J. Taylor, I. Brener, J.F. O’Hara, Metamaterials for thz polarimetric devices. Opt. Express 17(2), 773–783 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    P. Weis, O. Paul, C. Imhof, R. Beigang, M. Rahm, Strongly birefringent metamaterials as negative index terahertz wave plates. Appl. Phys. Lett. 95(17), 171104 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    T. Li, S.M. Wang, J.X. Cao, H. Liu, S.N. Zhu, Cavity-involved plasmonic metamaterial for optical polarization conversion. Appl. Phys. Lett. 97(26), 261113 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    A. Roberts, L. Lin, Plasmonic quarter-wave plate. Opt. Lett. 37(11), 1820–1822 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    W. Sun, Q. He, J. Hao, L. Zhou, A transparent metamaterial to manipulate electromagnetic wave polarizations. Opt. Lett. 36(6), 927–929 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J. Hao, Y. Yuan, L. Ran, T. Jiang, J. Kong, C. Chan, L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99(6), 1–4 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, L. Zhou, Optical metamaterial for polarization control. Phys. Rev. A 80(2), 1–5 (2009)Google Scholar
  19. 19.
    A. Pors, M.G. Nielsen, G.D. Valle, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Opt. Lett. 36(9), 1626–1628 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A.C. Strikwerda, R.D. Averitt, K. Fan, X. Zhang, G.D. Metcalfe, M. Wraback, Electromagnetic composite-based reflecting terahertz waveplates. Int. J. High Speed Electr. Syst. (IJHSES) 20(3), 583–588 (2011)CrossRefGoogle Scholar
  21. 21.
    F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, Q.-H. Wei, Polarization conversion with elliptical patch nanoantennas. Appl. Phys. Lett. 101(2), 023101 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R. Singh, E. Plum, W. Zhang, N.I. Zheludev, Highly tunable optical activity in planar achiral terahertz metamaterials. Opt. Express 18(13), 13425–13430 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    S.X. Li, Z.Y. Yang, J. Wang, M. Zhao, Broadband terahertz circular polarizers with single-and double-helical array metamaterials. J. Opt. Soc. Am. A 28(1), 19–23 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M. Mutlu, A.E. Akosman, A.E. Serebryannikov, E. Ozbay, Asymmetric chiral metamaterial circular polarizer based on four u-shaped split ring resonators. Opt. Lett. 36(9), 1653–1655 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Zhao, M.A. Belkin, A. Alù, Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    C. Sabah, H.G. Roskos, Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs. Prog. Electromagn. Res. 124, 301–314 (2012)CrossRefGoogle Scholar
  27. 27.
    J.K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, M. Wegener, Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phys. Lett. 100(10), 101109 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    C. Caloz, T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach. (Wiley-IEEE Press, New York, 2006)Google Scholar
  29. 29.
    J.D. Jackson, Classical electrodynamics, vol. 67, (Wiley, New York, 1999)Google Scholar
  30. 30.
    N.J. Cronin, Microwave and optical waveguides. (Taylor & Francis, 1995)Google Scholar
  31. 31.
    S. Tretyakov, Analytical modeling in applied electromagnetics. (Artech House Publishers, Boston, 2003)Google Scholar
  32. 32.
    CST. Computer simulation technology. http://www.cst.com/
  33. 33.
    R. Malureanu, P.U. Jepsen, S. Xiao, L. Zhou, D.G. Cooke, A. Andryieuski, A.V. Lavrinenko, Fractal Thz metamaterials: design, fabrication and characterisation. Proc. SPIE 7711, 77110M (2010)Google Scholar
  34. 34.
    D.-H. Kwon, P.L. Werner, D.H. Werner, Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Opt. Express 16(16), 11802–11807 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    P. Yeh, Optical waves in layered media, vol 95. (Wiley, New York, 1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dmitry L. Markovich
    • 1
  • Andrei Andryieuski
    • 2
  • Maksim Zalkovskij
    • 2
  • Radu Malureanu
    • 2
  • Andrei V. Lavrinenko
    • 2
  1. 1.Department of Photonics and Information TechnologySt. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussian Federation
  2. 2.Department of Photonics EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations