Applied Physics B

, Volume 111, Issue 4, pp 577–588 | Cite as

Surface modes in metal–insulator composites with strong interaction of metal particles

  • Vladimir V. Lebedev
  • Sergey S. Vergeles
  • Petr E. Vorobev


We theoretically examine plasmonic resonance excited between two close metallic grains embedded into a dielectric matrix. The grains sizes are assumed to be much less than the wavelength of the electromagnetic wave in the dielectric medium and the grain’s separation is assumed to be much smaller than the grains sizes. A qualitative scheme is developed that enables one to estimate frequency of the plasmonic resonance and value of the field enhancement inside the gap. Our general arguments are confirmed by rigorous analytic solution of the problem for simplest geometry—two identical spherical grains.


Resonance Condition Dielectric Medium Field Enhancement Ohmic Loss Incident Electromagnetic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank I. Gabitov, A. Sarychev and E.Podivilov for numerous valuable discussions. The work is partly supported by Federal Targeted Program of RF ‘S&S-PPIR’ and foundation ‘Dynasty’.


  1. 1.
    U. Kreibig, M. Vollmer, it Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science (Springer, Berlin, 1995)Google Scholar
  2. 2.
    A.K. Sarychev,V.M. Shalaev, Electrodynamics of metamaterials (World Scientific Publishing Company,Singapore, 2007)Google Scholar
  3. 3.
    C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles. (Wiley, New York, 1983)Google Scholar
  4. 4.
    J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G.C. des Francs, E. Finot, J.C. Weeber, A. Dereux, S. Kostcheev, H.I.E. Ahrach, A.L. Baudrion, J. Plain, R. Bachelot, P. Royer, G.P. Wiederrecht, Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. Nano Lett. 9, 3914–21 (2009)Google Scholar
  5. 5.
    R.M. Bakker, H.K. Yuan, Z. Liu, V.P. Drachev, A.V. Kildishev, V.M. Shalaev, R.H. Pedersen, S. Gresillon, A. Boltasseva, Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett. 92, 043101 (2008)CrossRefGoogle Scholar
  6. 6.
    M.H.C.J. Zhang, Y. Fu, J. R. Lakowicz, Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett. 7, 2101 (2007)Google Scholar
  7. 7.
    P.K. Jain, W. Huang, M. A. El-Sayed, On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007)Google Scholar
  8. 8.
    D. Bloemendal, P. Ghenuche, R. Quidant, I. G. Cormack, P. Loza-Alvarez, G. Badenes, Local field spectroscopy of metal dimers by tpl microscopy. Plasmonics 1, 41–44 (2006)Google Scholar
  9. 9.
    W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003)Google Scholar
  10. 10.
    K.-H. Su, Q.-H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003)Google Scholar
  11. 11.
    Y. Chu, M.G. Banaee, K.B. Crozier, Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 4, 2804 (2010)Google Scholar
  12. 12.
    Y. Cheng, M. Wang, G. Borghs, H. Chen, Gold nanoparticle dimers for plasmon sensing. Langmuir 27, 7884 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Haran, Accounts of chemical research Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields 43, 1135–43 (2010)Google Scholar
  14. 14.
    K. Kneipp, M. Moskovits, H. Kneipp, eds., Surface-Enhances Raman Scattering vol. 103 of Topics in Applied Physics (Springer, Berlin, 2006)Google Scholar
  15. 15.
    J. Clarkson, J. Winans, P. Facuhet, On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs. Opt. Mater. Exp.1, 970 (2011)Google Scholar
  16. 16.
    V. Amendola, O. M. Bakr, F. Stellacci, A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics 5, 85–97 (2010)Google Scholar
  17. 17.
    I. Romero, J. Aizpurua, G.W. Bryant, F.J.G. De Abajo, Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Exp. 14, 9988–99 (2006)Google Scholar
  18. 18.
    K. Seal, D. A. Genov, A.K. Sarychev, H. Noh, V.M. Shalaev, Z.C. Ying, X. Zhang, H. Cao, Coexistence of localized and delocalized surface plasmon modes in percolating metal films. Phys. Rev. Lett. 97, 206103 (2006)Google Scholar
  19. 19.
    K. Seal, M. A. Nelson, Z.C. Ying, D. A. Genov, A.K. Sarychev, V.M. Shalaev, Growth, morphology, and optical and electrical properties of semicontinuous metallic films. Phys. Rev. B 67, 035318 (2003)Google Scholar
  20. 20.
    D. Genov, V. Shalaev, A. Sarychev, Surface plasmon excitation and correlation-induced localization-delocalization transition in semicontinuous metal films. Phys. Rev. B 72, 113102 (2005)Google Scholar
  21. 21.
    M.K. Hossain, Y. Kitahama, V. Biju, T. Itoh, T. Kaneko, Y. Ozaki, Surface plasmon excitation and surface-enhanced raman scattering using two-dimensionally close-packed gold nanoparticles. J. Phys. Chem. C 113, 11689–11694 (2009)Google Scholar
  22. 22.
    J. Zeng, J. Huang, W. Lu, X. Wang, B. Wang, S. Zhang, J. Hou, Necklace-like noble-metal hollow nanoparticle chains: Synthesis and tunable optical properties. Adv. Mater. 19, 2172–2176 (2007)Google Scholar
  23. 23.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)CrossRefGoogle Scholar
  24. 24.
    A.D. Boardman, B.V. Paranjape, The optical surface modes of metal spheres. J. Phys. F: Metal Phys. 7, 1935 (1977)ADSCrossRefGoogle Scholar
  25. 25.
    V. Lebedev, S. Vergeles, P. Vorobev, Giant enhancement of electric field between two close metallic grains due to plasmonic resonance. Opt. Lett. 35, 640 (2010)Google Scholar
  26. 26.
    V.V. Klimov, D.V. Guzatov, Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom. Phys. Rev. B 75, 024303 (2007)Google Scholar
  27. 27.
    A.J. Hallock, P.L. Redmond, L.E. Brus, Optical forces between metallic particles. PNAS 102, 1280–1284 (2005)Google Scholar
  28. 28.
    R. Ruppin, Optical absorption of two spheres. J. Phys. Soc. Jpn. 58, 1446 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    R. Ruppin, Surface modes of two spheres. Phys. Rev. B 26, 3440–3444 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    P.K. Aravind, A. Nitzan, H. Metiu, Surf. Sci. 110, 189–204 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    A. Goyette, A. Navon, Two dielectric spheres in an electric field. Phys. Rev. B 13, 4320 (1976)Google Scholar
  32. 32.
    V. Babicheva, S. Vergeles, P. Vorobev, S. Burger, Localized surface plasmon modes in a system of two interacting metallic cylinders. J. Opt. Soc. Am. B 29, 1263–1269 (2012)Google Scholar
  33. 33.
    S.B. Ogale, V.N. Bhoraskar, P.V. Panat, Surface plasmon dispersion relation for spherical metal particles. Pramana 11, 135–144 (1978)Google Scholar
  34. 34.
    P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stokman, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)CrossRefGoogle Scholar
  35. 35.
    G. Sun, J. Khurgin, A. Bratkovsky, Coupled-mode theory of field enhancement in complex metal nanostructures. Phys. Rev. B 84, 045415 (2011)Google Scholar
  36. 36.
    I.P. Kaminow, W.L. Mammel, H.P. Weber, Metal-clad optical waveguides: analytical and experimantal study. Appl. Opt. 13, 396–405 (1974)Google Scholar
  37. 37.
    M.H. Davis, Two charged spherical conductors in a uniform electric field: forces and field strength. Q. J. Mech. Appl. Math. 17, 499–511 (1964)zbMATHGoogle Scholar
  38. 38.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics. Part I (McGraw-Hill Book Company, inc. & Kogakusha company ltd., 1953)Google Scholar
  39. 39.
    J.Q. Feng, Electrostatic interaction between two charged dielectric spheres in contact. Phys. Rev. E 62, 2891 (2000)Google Scholar
  40. 40.
    I.E. Mazets, Polarization of two close metal spheres in an external homogeneous electric field. J. Tech. Phys. 45, 1238–1240 (2000)Google Scholar
  41. 41.
    E.C. Le Ru, C. Galloway, P.G. Etchegoin, Phys. Chem. Chem. Phys. 8, 3083–3087 (2006)CrossRefGoogle Scholar
  42. 42.
    F.W. J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, NIST Handbook of Mathematical Functions (NIST National Institute of Standards and Technology & Cambridge University Press, 2010)Google Scholar
  43. 43.
    A.P. Prudnikov, Y.A. Brychkov, and O.I. Marichev, Integrals and series. Vol. 3. Spesial functions. Additional chapters. (FIZMATLIT, 2003), 2nd ed.Google Scholar
  44. 44.
    V.M. Shalaev, Nonlinear optics of random media, fractal composites and metal-dielectric films vol. 158 of Springer tracts in modern physics (Springer, Berlin, 2000)Google Scholar
  45. 45.
    V.M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, Berlin, 2002)Google Scholar
  46. 46.
    Z. Liu, A. Boltasseva, R. Pedersen, R.M. Bakker, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Plasmonic nanoantenna arrays for the visible. Metamaterials 2, 45–51 (2008)CrossRefGoogle Scholar
  47. 47.
    V.P. Drachev, U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, V.M. Shalaev, The ag dielectric function in plasmonic metamaterials. Opt. Exp. 16, 1186–1195 (2008)Google Scholar
  48. 48.
    D. A. Smirnova, A. I. Smirnovı, A. A. Zharov, Two-dimensional plasmonic eigenmode nanolocalization in an inhomogeneous metal-dielectric-metal slot waveguide. JETP Lett. 96, 262–267 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vladimir V. Lebedev
    • 1
    • 2
  • Sergey S. Vergeles
    • 1
    • 2
  • Petr E. Vorobev
    • 1
    • 2
  1. 1.Landau Institute for Theoretical Physics RASMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyjRussia

Personalised recommendations