# Surface modes in metal–insulator composites with strong interaction of metal particles

- 190 Downloads
- 1 Citations

## Abstract

We theoretically examine plasmonic resonance excited between two close metallic grains embedded into a dielectric matrix. The grains sizes are assumed to be much less than the wavelength of the electromagnetic wave in the dielectric medium and the grain’s separation is assumed to be much smaller than the grains sizes. A qualitative scheme is developed that enables one to estimate frequency of the plasmonic resonance and value of the field enhancement inside the gap. Our general arguments are confirmed by rigorous analytic solution of the problem for simplest geometry—two identical spherical grains.

## Keywords

Resonance Condition Dielectric Medium Field Enhancement Ohmic Loss Incident Electromagnetic Wave## Notes

### Acknowledgments

We thank I. Gabitov, A. Sarychev and E.Podivilov for numerous valuable discussions. The work is partly supported by Federal Targeted Program of RF ‘S&S-PPIR’ and foundation ‘Dynasty’.

## References

- 1.U. Kreibig, M. Vollmer, it Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science (Springer, Berlin, 1995)Google Scholar
- 2.A.K. Sarychev,V.M. Shalaev, Electrodynamics of metamaterials (World Scientific Publishing Company,Singapore, 2007)Google Scholar
- 3.C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles. (Wiley, New York, 1983)Google Scholar
- 4.J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G.C. des Francs, E. Finot, J.C. Weeber, A. Dereux, S. Kostcheev, H.I.E. Ahrach, A.L. Baudrion, J. Plain, R. Bachelot, P. Royer, G.P. Wiederrecht, Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. Nano Lett.
**9**, 3914–21 (2009)Google Scholar - 5.R.M. Bakker, H.K. Yuan, Z. Liu, V.P. Drachev, A.V. Kildishev, V.M. Shalaev, R.H. Pedersen, S. Gresillon, A. Boltasseva, Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett.
**92**, 043101 (2008)CrossRefGoogle Scholar - 6.M.H.C.J. Zhang, Y. Fu, J. R. Lakowicz, Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett.
**7**, 2101 (2007)Google Scholar - 7.P.K. Jain, W. Huang, M. A. El-Sayed, On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett.
**7**, 2080–2088 (2007)Google Scholar - 8.D. Bloemendal, P. Ghenuche, R. Quidant, I. G. Cormack, P. Loza-Alvarez, G. Badenes, Local field spectroscopy of metal dimers by tpl microscopy. Plasmonics
**1**, 41–44 (2006)Google Scholar - 9.W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, Optical properties of two interacting gold nanoparticles. Opt. Commun.
**220**, 137–141 (2003)Google Scholar - 10.K.-H. Su, Q.-H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett.
**3**, 1087–1090 (2003)Google Scholar - 11.Y. Chu, M.G. Banaee, K.B. Crozier, Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies. ACS Nano
**4**, 2804 (2010)Google Scholar - 12.Y. Cheng, M. Wang, G. Borghs, H. Chen, Gold nanoparticle dimers for plasmon sensing. Langmuir
**27**, 7884 (2011)CrossRefGoogle Scholar - 13.G. Haran, Accounts of chemical research Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields
**43**, 1135–43 (2010)Google Scholar - 14.K. Kneipp, M. Moskovits, H. Kneipp, eds., Surface-Enhances Raman Scattering vol. 103 of Topics in Applied Physics (Springer, Berlin, 2006)Google Scholar
- 15.J. Clarkson, J. Winans, P. Facuhet, On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs. Opt. Mater. Exp.
**1**, 970 (2011)Google Scholar - 16.V. Amendola, O. M. Bakr, F. Stellacci, A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics
**5**, 85–97 (2010)Google Scholar - 17.I. Romero, J. Aizpurua, G.W. Bryant, F.J.G. De Abajo, Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Exp.
**14**, 9988–99 (2006)Google Scholar - 18.K. Seal, D. A. Genov, A.K. Sarychev, H. Noh, V.M. Shalaev, Z.C. Ying, X. Zhang, H. Cao, Coexistence of localized and delocalized surface plasmon modes in percolating metal films. Phys. Rev. Lett.
**97**, 206103 (2006)Google Scholar - 19.K. Seal, M. A. Nelson, Z.C. Ying, D. A. Genov, A.K. Sarychev, V.M. Shalaev, Growth, morphology, and optical and electrical properties of semicontinuous metallic films. Phys. Rev. B
**67**, 035318 (2003)Google Scholar - 20.D. Genov, V. Shalaev, A. Sarychev, Surface plasmon excitation and correlation-induced localization-delocalization transition in semicontinuous metal films. Phys. Rev. B
**72**, 113102 (2005)Google Scholar - 21.M.K. Hossain, Y. Kitahama, V. Biju, T. Itoh, T. Kaneko, Y. Ozaki, Surface plasmon excitation and surface-enhanced raman scattering using two-dimensionally close-packed gold nanoparticles. J. Phys. Chem. C
**113**, 11689–11694 (2009)Google Scholar - 22.J. Zeng, J. Huang, W. Lu, X. Wang, B. Wang, S. Zhang, J. Hou, Necklace-like noble-metal hollow nanoparticle chains: Synthesis and tunable optical properties. Adv. Mater.
**19**, 2172–2176 (2007)Google Scholar - 23.P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B
**6**, 4370 (1972)CrossRefGoogle Scholar - 24.A.D. Boardman, B.V. Paranjape, The optical surface modes of metal spheres. J. Phys. F: Metal Phys.
**7**, 1935 (1977)ADSCrossRefGoogle Scholar - 25.V. Lebedev, S. Vergeles, P. Vorobev, Giant enhancement of electric field between two close metallic grains due to plasmonic resonance. Opt. Lett.
**35**, 640 (2010)Google Scholar - 26.V.V. Klimov, D.V. Guzatov, Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom. Phys. Rev. B
**75**, 024303 (2007)Google Scholar - 27.A.J. Hallock, P.L. Redmond, L.E. Brus, Optical forces between metallic particles. PNAS
**102**, 1280–1284 (2005)Google Scholar - 28.R. Ruppin, Optical absorption of two spheres. J. Phys. Soc. Jpn.
**58**, 1446 (1989)ADSCrossRefGoogle Scholar - 29.R. Ruppin, Surface modes of two spheres. Phys. Rev. B
**26**, 3440–3444 (1982)ADSCrossRefGoogle Scholar - 30.P.K. Aravind, A. Nitzan, H. Metiu, Surf. Sci.
**110**, 189–204 (1981)ADSCrossRefGoogle Scholar - 31.A. Goyette, A. Navon, Two dielectric spheres in an electric field. Phys. Rev. B
**13**, 4320 (1976)Google Scholar - 32.V. Babicheva, S. Vergeles, P. Vorobev, S. Burger, Localized surface plasmon modes in a system of two interacting metallic cylinders. J. Opt. Soc. Am. B
**29**, 1263–1269 (2012)Google Scholar - 33.S.B. Ogale, V.N. Bhoraskar, P.V. Panat, Surface plasmon dispersion relation for spherical metal particles. Pramana
**11**, 135–144 (1978)Google Scholar - 34.P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stokman, Plasmon hybridization in nanoparticle dimers. Nano Lett.
**4**, 899–903 (2004)CrossRefGoogle Scholar - 35.G. Sun, J. Khurgin, A. Bratkovsky, Coupled-mode theory of field enhancement in complex metal nanostructures. Phys. Rev. B
**84**, 045415 (2011)Google Scholar - 36.I.P. Kaminow, W.L. Mammel, H.P. Weber, Metal-clad optical waveguides: analytical and experimantal study. Appl. Opt.
**13**, 396–405 (1974)Google Scholar - 37.M.H. Davis, Two charged spherical conductors in a uniform electric field: forces and field strength. Q. J. Mech. Appl. Math.
**17**, 499–511 (1964)MATHGoogle Scholar - 38.P.M. Morse, H. Feshbach, Methods of Theoretical Physics. Part I (McGraw-Hill Book Company, inc. & Kogakusha company ltd., 1953)Google Scholar
- 39.J.Q. Feng, Electrostatic interaction between two charged dielectric spheres in contact. Phys. Rev. E
**62**, 2891 (2000)Google Scholar - 40.I.E. Mazets, Polarization of two close metal spheres in an external homogeneous electric field. J. Tech. Phys.
**45**, 1238–1240 (2000)Google Scholar - 41.E.C. Le Ru, C. Galloway, P.G. Etchegoin, Phys. Chem. Chem. Phys.
**8**, 3083–3087 (2006)CrossRefGoogle Scholar - 42.F.W. J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, NIST Handbook of Mathematical Functions (NIST National Institute of Standards and Technology & Cambridge University Press, 2010)Google Scholar
- 43.A.P. Prudnikov, Y.A. Brychkov, and O.I. Marichev, Integrals and series. Vol. 3. Spesial functions. Additional chapters. (FIZMATLIT, 2003), 2nd ed.Google Scholar
- 44.V.M. Shalaev, Nonlinear optics of random media, fractal composites and metal-dielectric films vol. 158 of Springer tracts in modern physics (Springer, Berlin, 2000)Google Scholar
- 45.V.M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, Berlin, 2002)Google Scholar
- 46.Z. Liu, A. Boltasseva, R. Pedersen, R.M. Bakker, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Plasmonic nanoantenna arrays for the visible. Metamaterials
**2**, 45–51 (2008)CrossRefGoogle Scholar - 47.V.P. Drachev, U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, V.M. Shalaev, The ag dielectric function in plasmonic metamaterials. Opt. Exp.
**16**, 1186–1195 (2008)Google Scholar - 48.D. A. Smirnova, A. I. Smirnovı, A. A. Zharov, Two-dimensional plasmonic eigenmode nanolocalization in an inhomogeneous metal-dielectric-metal slot waveguide. JETP Lett. 96, 262–267 (2012)Google Scholar