Applied Physics B

, Volume 111, Issue 4, pp 551–557 | Cite as

Additive colouring of CaF2:Yb crystals: determination of Yb2+ concentration in CaF2:Yb crystals and ceramics

  • A. S. Shcheulin
  • A. E. Angervaks
  • T. S. Semenova
  • L. F. Koryakina
  • M. A. Petrova
  • P. P. Fedorov
  • V. M. Reiterov
  • E. A. Garibin
  • A. I. Ryskin
Article

Abstract

When growing CaF2 crystal doped with rare-earth ions, most of these ions are present in a trivalent state. However, due to contact with graphite crucible, a small proportion of a number of ions (Eu, Sm, Yb and Tm) are reduced to a bivalent state. A similar situation takes place during fabrication of CaF2 ceramics doped with rare-earth metals. This fact is of particular importance for laser CaF2:Yb crystals (ceramics), a promising material for short-pulse, high-power, high-energy diode-pumped solid state lasers since the presence of bivalent Yb ions can be a source of thermal losses. To date, there has been no technique to determine Yb2+ concentration in as-grown crystals. The proposed technique is based on a total reduction of Yb3+ ions via the heating of as-grown CaF2 crystals with known concentration of Yb in the reducing atmosphere of metal vapour and determining the cross section of absorption bands of Yb2+ ions. The knowledge of these parameters allows estimation of the Yb2+ content in CaF2:Yb crystals or ceramics by analysing their absorption spectra. Examples of using this technique are given. The technology of CdF2 crystals reduction (an “additive colouring”) and features of colouring of crystals doped with rare-earth ions are considered.

References

  1. 1.
    W.F. Krupke, IEEE J. Sel. Top. Quant. 6, 1287 (2000)CrossRefGoogle Scholar
  2. 2.
    V. Petit, J.L. Doualan, P. Camy, V. Ménard, R. Moncorgé, Appl. Phys. B 78, 681 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J.L. Doualan, R. Moncorgé, Opt. Lett. 29, 1879 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J.L. Doualan, R. Moncorgé, Opt. Lett. 29, 2767 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    M. Siebold, M. Hornung, R. Boedefelt, S. Podleska, S. Klingebiel, C. Wandt, F. Krausz, S. Karsch, R. Uecker, A. Jochmann, J. Hein, M.C. Kaluza, Opt. Lett. 33, 2770 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    M. Siebold, S. Bock, U. Schramm, B. Xu, J.L. Doualan, P. Camy, R. Moncorgé, Appl. Phys. B 97, 327 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J.L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, J. Boudeile, F. Druon, F. Balembois, P. Georges, Laser Phys. 20, 533 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    G.A. Slack, Phys. Rev. 122, 1451 (1961)ADSCrossRefGoogle Scholar
  9. 9.
    J. Boudeile, J. Didierjean, P. Camy, J.L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, P. Georges, Opt. Express 16, 10098 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    P.A. Popov, P.P. Fedorov, S.V. Kuznetsov, V.A. Konyushkin, V.V. Osiko, T.T. Basiev, Dokl. Phys. 53, 198 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    P.A. Popov, P.P. Fedorov, V.A. Konyushkin, A.N. Nakladov, S.V. Kuznetsov, V.V. Osiko, T.T. Basiev, Dokl. Phys. 53, 413 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    S.A. Kazanskii, Sov. Phys. JETP-USSR 57, 1202 (1983)Google Scholar
  13. 13.
    C.R.A. Catlow, A.V. Chadwick, G.N. Greaves, L.M. Moroney, Nature 312, 601 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    D.J.M. Bevan, S.E. Ness, M.R. Taylor, Eur. J. Sol. State Inorg. Chem. 25, 527 (1988)Google Scholar
  15. 15.
    S.A. Kazanskii, A.I. Ryskin, Phys. Solid State 44, 1415 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Kazanskii, A.I. Ryskin, A.E. Nikiforov, A.Yu. Zakharov, M.Yu. Ougrumov, G.S. Shakurov, Phys. Rev. B 72, 014127 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    V. Petit, P. Camy, J.-L. Doualan, X. Portier, R. Moncorgé, Phys. Rev. B 78, 085131 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    F. Druon, S. Ricaud, D.N. Papadopoulos, A. Pellegrina, P. Camy, J.-L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, Opt. Mater. Express 1, 489 (2011)CrossRefGoogle Scholar
  19. 19.
    P.P. Fedorov, V.V. Osiko, T.T. Basiev, Yu. V. Orlovskii, K.V. Dykel’skii, I.A. Mironov, V.A. Demidenko, and A.N. Smirnov, Optical Fluoride and Oxysulphide Ceramics: Preparation and Characterization. In: Developments in Ceramic Materials Research (NOVA Science Pub., Inc., New York, 2007)Google Scholar
  20. 20.
    T.T. Basiev, M.E. Doroshenko, P.P. Fedorov, V.A. Konyushkin, S.V. Kuznetsov, V.V. Osiko, M.Sh. Akchurin, Opt. Lett. 33, 521 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A. Lyberis, G. Patriarche, P. Gredin, D. Vivien, M. Mortier, J. Eur. Ceram. Soc. 31, 1619 (2011)CrossRefGoogle Scholar
  22. 22.
    P.P. Fedorov, V.V. Osiko, S.V. Kuznetsov, E.A. Garibin, J. Phys: Conf. Ser. 345, 012017 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M.Sh. Akchurin, T.T. Basiev, A.A. Demidenko, M.E. Doroshenko, P.P. Fedorov, E.A. Garibin, P.E. Gusev, S.V. Kuznetsov, M.A. Krutov, I.A. Mironov, V.V. Osiko, P.A. Popov, Opt. Mater. 35, 444 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    S.M. Kaczmarek, T. Tsuboi, M. Ito, G. Boulon, G. Leniec, J Phys-Condens Mat 17, 3771 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    I. Nicoara, N. Pecingina-Garjoaba, O. Bunoiu, J. Cryst. Growth 310, 1476 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    A. Smakula, Phys. Rev. 77, 408 (1950)ADSCrossRefGoogle Scholar
  27. 27.
    V.A. Arkhangelskaya, M.N. Kiseleva, Fiz. Tverd. Tela 9, 3523 (1967) (in Russian)Google Scholar
  28. 28.
    F.K. Fong, J. Chem. Phys. 41, 2291 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    Z.J. Kiss, P.N. Yocom, J. Chem. Phys. 41, 1511 (1964)ADSCrossRefGoogle Scholar
  30. 30.
    A.S. Shcheulin, T.S. Semenova, L.F. Koryakina, M.A. Petrova, A.K. Kupchikov, A.I. Ryskin, Opt. Spectrosc. 103, 660 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    A.S. Shcheulin, T.S. Semenova, L.F. Koryakina, M.A. Petrova, A.E. Angervaks, A.I. Ryskin, Opt. Spectrosc. 110, 617 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    C.Z. van Doorn, Philips Res. Reports. Suppl. 4, 1 (1962)Google Scholar
  33. 33.
    R.C. Alig, Z.J. Kiss, J.P. Brown, D.S. McClure, Phys. Rev. 186, 276 (1969)ADSCrossRefGoogle Scholar
  34. 34.
    G.J. Pogatshnik, D.S. Hamilton, Phys. Rev. B. 36, 8251 (1987)ADSCrossRefGoogle Scholar
  35. 35.
    A.S. Shcheulin, A.I. Ryskin, A.E. Angervaks, P.P. Fedorov, V.V. Osiko, A.A. Demidenko, E.A. Garibin, A.N. Smirnov, K.V. Dukel’skii, I.A. Mironov, Opt. Spectrosc. 110, 604 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    I. Nicoara, L. Lighezan, M. Enculescu, I. Enculescu, J. Cryst. Growth 310, 2026 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    V.V. Karelin, M.Z. Kazakevich, A.F. Redkin, V.E. Bozhevolnov, G.V. Molev, V.I. Korobkov, B.P. Sobolev, Sov. Phys. Crystallogr. 20, 464 (1975)Google Scholar
  38. 38.
    F. Delbove, S. Lallemand-Chatain, CR Acad. Sci. C. Chim. 270, 964 (1970)Google Scholar
  39. 39.
    W. Hayes (ed.), Crystals with the Fluorite Structure: Electronic, Vibrational, and Defect Properties (Clarendon Press, Oxford, 1974)Google Scholar
  40. 40.
    V.A. Arkhangelskaya, M.N. Kiseleva, V.M. Shraiber, Fiz. Tverd. Tela 11, 870 (1969) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. S. Shcheulin
    • 1
  • A. E. Angervaks
    • 1
  • T. S. Semenova
    • 1
  • L. F. Koryakina
    • 1
  • M. A. Petrova
    • 1
  • P. P. Fedorov
    • 2
  • V. M. Reiterov
    • 3
  • E. A. Garibin
    • 3
  • A. I. Ryskin
    • 1
  1. 1.National Research University of Information Technologies, Mechanics and OpticsSaint PetersburgRussia
  2. 2.A.M. Prokhorov General Physics InstituteMoscowRussia
  3. 3.INCROM Ltd.Saint PetersburgRussia

Personalised recommendations