Advertisement

Applied Physics B

, Volume 111, Issue 3, pp 483–488 | Cite as

Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators

  • Yongzhi Cheng
  • Yan Nie
  • Rongzhou GongEmail author
Article

Abstract

In this paper, we report the design, simulation, and measurements of a broadband metamaterial absorber (MA) based on a periodic array of multi-layer cross-structure resonators. A perfect narrowband MA consists of cross-structure resonator, dielectric substrate, and continuous metal films, and the absorption frequency can be tunable by changing the geometrical parameters based on L-C resonance circuit theory. Furthermore, the absorption band of our design is effectively extended by simply stacking several such structural layers with different geometrical dimensions. Finally, the 4-layer cross-structure MA is only 2 mm, which can achieve a full width at half maximum (FWHM) bandwidth of 2 GHz by numerical simulations, and 90 % bandwidth of 1.9 GHz by experiments.

Keywords

Resonant Frequency Frequency Selective Surface Metamaterial Absorber Resonance Circuit Cross Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    F. Bilotti, A. Alu, N. Engheta, L. Vegni, in Proceedings of the 2005 Nanoscience and Nanotechnology Symposium—NN 2005 (Frascati, Italy, 2005)Google Scholar
  5. 5.
    H. Mosallaei, K. Sarabandi, in IEEE Antennas and Propagation Society International Symposium, vol. 1B, p. 615 (2005)Google Scholar
  6. 6.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Phys. Rev. B 79, 125104 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    C. Hu, Z. Zhao, X. Chen, X. Luo, Opt. Express 17, 11039 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Y.Z. Cheng, H.L. Yang, J. Appl. Phys. 108, 034906 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Q.Y. Wen, H.W. Zhang, Y.S. Xie, Q.H. Yang, Y.L. Liu, Appl. Phys. Lett. 95, 241111 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, W.J. Padilla, X. Zhang, R.D. Averitt, J. Phys. D 43, 225102 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    X. Liu, T. Starr, A.F. Starr, W.J. Padilla1, Phys. Rev. Lett., 104, 207403 (2010)Google Scholar
  13. 13.
    J. Hao, L. Zhou, M. Qiu, Phys. Rev. B 83, 165107 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    J. Lee, S. Lim, Electron. Lett. 47, 478 (2011)Google Scholar
  15. 15.
    M.H. Li, H.L. Yang, X.W. Hou, Y. Tian, D.Y. Hou, Pro. In. Electro. Res. 108, 37 (2010)CrossRefGoogle Scholar
  16. 16.
    Y.Z. Cheng, Y. Nie, R.Z. Gong, H.L. Yang, Eur. Phys. J. Appl. Phys. 56, 31301 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H. Wakatsuchi, S. Greedy, C. Christopoulos, J. Paul, Opt. Express 18, 22187 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    H. Luo, Y.Z. Cheng, R.Z. Gong, Eur. Phys. J. B 81, 387 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    W. Ren, G. Zhang, Y. Wu, H. Ding, Q. Shen, K. Zhang, J. Li, N. Pan, X. Wang, Opt. Express 19, 26536 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Y.Q. Ye, Y. Jin, S. He, Opt. Soc. Am. B 27, 498 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Grant, Y. Ma, S. Saha, A. Khalid, D.R.S. Cumming, Opt. Lett. 36, 3476 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C.M. Soukoulis, Phys. Rev. B 73, 041101 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations