Advertisement

Applied Physics B

, Volume 111, Issue 3, pp 415–418 | Cite as

Compression of long-cavity Ti:sapphire oscillator pulses with large-mode-area photonic crystal fibers

Article

Abstract

Motivated by the pulse compression challenge of novel long-cavity, high-pulse-energy Ti:sapphire laser oscillators, we report on ~280 nm supercontinuum generation and 4.5-times compression of close to transform limited, high-energy oscillator pulses using different large-mode-area photonic crystal fibers and standard chirped mirrors. As input, we used pulses of a long-cavity Ti:sapphire oscillator with 190 nJ pulse energy, 70 fs pulse length and 3.6 MHz repetition rate. Compressed pulses at the fiber/compressor output had a duration of 15–18 fs with up to 100 nJ pulse energy representing as much as 53 % throughput for the fiber/chirped mirror system. Using transform-limited input pulses, we could use short fiber pieces and thus a simple, low-dispersion chirped mirror compressor comprised of one pair of mirrors.

Keywords

Photonic Crystal Fiber Pulse Compression Supercontinuum Generation Group Delay Dispersion Large Mode Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project was supported by grant ELI-09-1-2010-0010 of the National Development Agency of Hungary. P. D. acknowledges support from the János Bolyai Scholarship of the Hungarian Academy of Sciences and from an EU Marie Curie Intra-European Fellowship (project UPNEX).

References

  1. 1.
    P. Dombi, V.S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, G. Tempea, Opt. Express 13, 10888 (2005) and references thereinGoogle Scholar
  2. 2.
    M. Yamashita, K. Yamane, R. Morita, IEEE J. Sel. Top. Quant. El 12, 213 (2006)CrossRefGoogle Scholar
  3. 3.
    E. Matsubara, K. Yamane, T. Sekikawa, M. Yamashita, J. Opt. Soc. Am. B 24, 985 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, A. Leitenstorfer, Nature Phot. 4, 33 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    G. Stibenz, N. Zhavoronkov, G. Steinmeyer, Opt. Lett. 31, 274–276 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    G. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 2006)Google Scholar
  8. 8.
    A. Baltuška, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma, R. Szipocs, Appl. Phys. B 65, 175 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    P. Dombi, A. Apolonski, Ch. Lemell, G.G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, K. Torizuka, J. Burgdörfer, T.W. Hänsch, F. Krausz, New J. Phys. 6, 39 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    T. Eidam, F. Röser, O. Schmidt, J. Limpert, A. Tünnermann, Appl. Phys. B 92, 9–12 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    C. Jocher, T. Eidam, S. Haedrich, J. Limpert, A. Tünnermann, Opt. Lett. 37, 4407–4409 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    I.V. Fedotov, A.A. Lanin, A.A. Voronin, A.B. Fedotov, A.M. Zheltikov, O.N. Egerova, S.L. Semjonov, A.D. Pryamikov, E.M. Diano, J. Mod. Opt. 57, 1867–1870 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    I. Martial, D. Papadopoulos, M. Hanna, F. Druon, P. Georges, Opt. Express 17, 11155–11160 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    M. Nisoli, S. De Silvestri, O. Svelto, Appl. Phys. Lett. 68, 2793 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, A. Apolonski, New J. Phys. 7, 216 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    T. Südmeyer, S.V. Marchese, S. Hashimoto, C.R.E. Baer, G. Gingras, B. Witzel, U. Keller, Nature Phot. 2, 599 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Chong, W.H. Renninger, F.W. Wise, Opt. Lett. 32, 2408 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    B. Ortaç, M. Baumgartl, J. Limpert, A. Tünnermann, Opt. Lett. 34, 1585 (2009)ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    C.-H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D. Machewirth, S. Heinemann, Opt. Lett. 31, 17 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    D. Flamm, C. Schulze, O.A. Schmidt, S. Schröter, M. Duparré, Proc. SPIE 7914, 79141R (2011)ADSCrossRefGoogle Scholar
  22. 22.
    G. Genty, T. Ritari, H. Ludvigsen, Opt. Express 13, 8625 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    V. Mitrofanov, A.A. Ivanov, M.V. Alfimov, A.A. Podshivalov, A.M. Zheltikov, Opt. Commun. 280, 453 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    R. Cherif, M. Zghal, I. Nikolov, M. Danilov, Opt. Commun. 283, 4378 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J.C. Baggett, T.M. Monro, D.J. Richardson, U. Keller, Opt. Lett. 28, 1951 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    T. Ganz, V. Pervak, A. Apolonski, P. Baum, Opt. Lett. 36, 1107 (2011)CrossRefGoogle Scholar
  27. 27.
    P. Dombi, P. Antal, J. Fekete, R. Szipöcs, Z. Várallyay, Appl. Phys. B 88, 379 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    P. Dombi, P. Antal, Laser Phys. Lett. 4, 538 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J.W. Nicholson, J. Jasapara, W. Rudolph, F.G. Omenetto, A.J. Taylor, Opt. Lett. 24, 1774 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    W. Koehler, G. Tempea, Proc. SPIE 7582, 75820B (2010)ADSCrossRefGoogle Scholar
  31. 31.
    S. Dewald, T. Lang, C.D. Schröter, R. Moshammer, J. Ullrich, M. Siegel, U. Morgner, Opt. Lett. 31, 2072 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    P. Dombi, S.E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuska, T. Fuji, F. Krausz, A.Y. Elezzabi, Opt. Express 18, 24206 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    P. Rácz, S.E. Irvine, M. Lenner, A. Mitrofanov, A. Baltuska, A.Y. Elezzabi, P. Dombi, Appl. Phys. Lett. 98, 111116 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Wigner Research Centre for PhysicsBudapestHungary
  2. 2.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations