Applied Physics B

, Volume 111, Issue 2, pp 299–304 | Cite as

Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating

  • R. Andrew Sims
  • Pankaj Kadwani
  • Heike Ebendorff-Heideprem
  • Lawrence Shah
  • Tanya M. Monro
  • Martin Richardson


We report femtosecond pulse generation and chirped pulse amplification in Tm:fiber. A mode-locked oscillator operating in the soliton regime produced 800 fs pulses with 5 nm spectral bandwidth, at 40 pJ pulse energy. This oscillator seeded a pre-amplifier that utilizes a Raman soliton self-frequency shift to produce wavelength tunable pulses with 3 nJ energy, reduced pulse duration of 150 fs, and increased bandwidth of 30 nm. For further amplification, the pulses were stretched up to 160 ps using a chirped Bragg grating (CBG). Stretched pulses were amplified to 85 nJ after compression in single-mode Tm:fiber and recompressed with the CBG as short as 400 fs. Compressed pulses were coupled into a highly nonlinear tellurite fiber to investigate the potential of this ultrashort pulse 2-μm fiber source as a pump for mid-IR supercontinuum generation.


Soliton TeO2 Chirp Pulse Amplification Dispersion Compensate Fiber Hyperbolic Secant Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of the Department of Defense (DoD) High Energy Laser Joint Technology Office (JTO) through the Multidisciplinary Research Initiative (MRI) program (contract #W911NF-05-1-0517), the Office of Naval Research (ONR) through a Defense University Research Program (contract #N000141210144), and the State of Florida.


  1. 1.
    N. Leindecker, A. Marandi, R.L. Byer, K.L. Vodopyanov, I. Hartl, M. Fermann, P.G. Schunemann, Opt. Exp. 20, 7046–7053 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, T.M. Monro, Appl. Phys. Lett. 97, 061106 (2010)Google Scholar
  3. 3.
    L.E. Nelson, E.P. Ippen, H.A. Haus, Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser. Appl. Phys. Lett. 67, 19 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    R.C. Sharp, D.E. Spock, N. Pan, J. Elliot, Opt. Lett. 21, 881–883 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Solodyankin, E.D. Obraztsova, A.S. Lobach, A.I. Chernov, A.V. Tausenev, V.I. Konov, E.M. Dianov, Opt. Lett. 33, 1336–1338 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    M. Engelbrecht, F. Haxsen, A. Ruehl, Opt. Lett. 33, 690–692 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R. Sims, P. Kadwani, L. Shah, M. Richardson, ASSP 4, ATuD4 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Kivisto, T. Hakulinen, IEEE Phot. Tech. Lett. 19, 934–936 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    G. Imeshev, M. Fermann, Opt. Exp. 13, 7424–7431 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    F. Haxsen, D. Wandt, U. Morgner, J. Neumann, D. Kracht, Opt. Let. 35, 2991–2993 (2010)CrossRefGoogle Scholar
  11. 11.
    L.-M. Yang, P. Wan, V. Protopopov, J. Liu, Opt. Exp. 20, 5683–5688 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    C.R. Phillips, J. Jiang, C. Mohr, A.C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J.S. Harris, M.E. Fermann, M.M. Fejer, Opt. Lett. 37, 2928–2930 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    K.-H. Liao, M.-Y. Cheng, E. Flecher, V.I. Smirnov, L.B. Glebov, A. Galvanauskas, Opt. Exp. 15, 4876–4882 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    G. Chang, M. Rever, V. Smirnov, Opt. Lett. 34, 2952–2954 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    K. Kieu, M. Mansuripur, Opt. Lett. 32, 2242–2244 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    F. Ouellette, Opt. Lett. 12, 847–849 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    M.R. Oermann, H. Ebendorff-Heidepriem, Y. Li, T.-C. Foo, T.M. Monro, Opt. Exp. 17, 15578–15584 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    H. Ebendorff-Heidepriem, T.M. Monro, Opt. Mat. Exp. 2, 304 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Ebendorff-Heidepriem, K. Kuan, M.R. Oermann, K. Knight, T.M. Monro, Opt. Mat. Exp. 2, 432 (2012)CrossRefGoogle Scholar
  20. 20.
    C.J. Voyce, A.D. Fitt, J.R. Hayes, T.M. Monro, J. Light. Tech. 27, 871–878 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Andrew Sims
    • 1
  • Pankaj Kadwani
    • 1
  • Heike Ebendorff-Heideprem
    • 2
  • Lawrence Shah
    • 1
  • Tanya M. Monro
    • 2
  • Martin Richardson
    • 1
  1. 1.Townes Laser Institute, CREOL, The College of Optics and PhotonicsUniversity of Central FloridaOrlandoUSA
  2. 2.Centre of Expertise in Photonics, Institute for Photonics and Advanced SensingUniversity of AdelaideAdelaideAustralia

Personalised recommendations