Applied Physics B

, Volume 111, Issue 2, pp 289–297 | Cite as

Measurement of the pH value in pork meat early postmortem by Raman spectroscopy

  • R. Scheier
  • H. Schmidt


The pH of a muscle is an accepted parameter to identify normal and deviating meat qualities. In this work, Raman spectroscopy is shown to be suitable for the non-invasive measurement of the early postmortem pH of meat. Raman spectra of ten pork semimembranosus muscles were recorded with a portable handheld device 0.5–24 h postmortem. The spectra were correlated with pH and lactate kinetics measured in parallel. Seven of the muscles were normal, two exhibited accelerated glycolysis and one showed absence of acidification. The pH decline with time could be calculated from the Raman spectra with the Henderson–Hasselbalch equation using only two signals of phosphate vibrations at 980 and 1,080 cm−1 with a close correlation for each muscle, but larger variations between animals. More robust and better correlations for all muscles were obtained with a linear model based on 11 signals from lactate, lactic acid, phosphate, a carbonyl band and nucleotides resulting in R 2 = 0.78 and RMSECV = 0.2 or a partial least-square model using the complete spectrum (R 2 = 0.94 and RMSECV = 0.2). These results show the potential of Raman spectroscopy for an online detection of the pH and thus meat qualities during meat processing.


Raman Spectrum Partial Less Square Regression Meat Quality Partial Less Square Regression Model Pork Meat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the German research foundation DFG (Deutsche Forschungsgemeinschaft) in the framework of the cluster project “Minimal Processing” of the Research Association of the German Food Industry (FEI). Financial support for the Research Centre of Food Quality by the European Regional Development Fund (ERDF) is gratefully acknowledged. The authors wish to thank Dr. Heinz-Detlef Kronfeldt for generous support with the prototype handheld Raman device, Dirk Grühn for the excellent cooperation and for providing the pork samples as well as Stefanie Hofmann and Thomas Kador for assistance with lactate and Raman measurements.


  1. 1.
    P. Henckel, A. Karlsson, N. Oksbjerg, J.S. Petersen, Meat Sci. 55, 131–138 (2000)CrossRefGoogle Scholar
  2. 2.
    T.L. Scheffler, D.E. Gerrard, Meat Sci. 77, 7–16 (2007)CrossRefGoogle Scholar
  3. 3.
    R.D. Warner, R.G. Kauffman, M.L. Greaser, Meat Sci. 45(3), 339–352 (1997)CrossRefGoogle Scholar
  4. 4.
    H. Schmidt, K. Sowoidnich, M. Maiwald, B. Sumpf, H.-D. Kronfeldt, Proc. SPIE 73120H, 1–8 (2009)Google Scholar
  5. 5.
    B.G. Frushour, J.L. Koenig, Raman spectroscopy of proteins. in Advances in Infrared and Raman Spectroscopy (Heyden, London, 1975)Google Scholar
  6. 6.
    T.G. Spiro, B.P. Gaber, Annu. Rev. Biochem. 46, 553–572 (1977)CrossRefGoogle Scholar
  7. 7.
    M. Berjot, J. Marx, A.J.P. Alix, J. Raman Spectrosc. 18, 289–300 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    T.-J. Yu, J.L. Lippert, W.L. Peticolas, Biopolymers 12, 2161–2176 (1973)CrossRefGoogle Scholar
  9. 9.
    J.L. Koenig, B. Frushour, Biopolymers 11, 1871–1892 (1972)CrossRefGoogle Scholar
  10. 10.
    R.M.C. Dawson, D.C. Elliott, W.H. Elliott, K.M. Jones, Data for Biochemical Research (Oxford University Press, Oxford, 1989)Google Scholar
  11. 11.
    J.G. Mesu, T. Visser, F. Soulimani, B.M. Weckhuysen, Vib. Spectrosc. 39, 114–125 (2005)CrossRefGoogle Scholar
  12. 12.
    K.T. Yue, M. Lee, J. Zheng, R. Callender, Biochim. Biophys. Acta 1078, 296–302 (1991)CrossRefGoogle Scholar
  13. 13.
    L. Rimai, T. Cole, J.L. Parsons, J.T. Hickmott Jr, E.B. Carew, Biophys. J. 9(3), 320–329 (1969)ADSCrossRefGoogle Scholar
  14. 14.
    W.D. McElroy, B. Glass, Phosphorus Metabolism, vol. I (Johns Hopkins University Press, Baltimore, 1951)Google Scholar
  15. 15.
    Y. Xie, Y. Jiang, D. Ben-Amotz, Anal. Biochem. 343, 223–230 (2005)CrossRefGoogle Scholar
  16. 16.
    L. Rimai, M.E. Heyde, Biochemistry 10(7), 1121–1128 (1971)CrossRefGoogle Scholar
  17. 17.
    R.B. Moon, J.H. Richards, J. Biol. Chem. 248(20), 7276–7278 (1973)Google Scholar
  18. 18.
    A. Miri, A. Talmant, J.P. Renou, G. Monin, Meat Sci. 31, 165–173 (1992)CrossRefGoogle Scholar
  19. 19.
    A. Madden, M.O. Leach, J.C. Sharp, D.J. Collins, D. Easton, NMR Biomed. 4(1), 1–11 (1991)CrossRefGoogle Scholar
  20. 20.
    J.C. Puyana, B.R. Soller, S. Zhang, S.O. Heard, J. Trauma Issue 46(1), 9–15 (1999)CrossRefGoogle Scholar
  21. 21.
    B.R. Soller, R.H. Micheels, J. Coen, B. Parikh, L. Chu, C. Hsi, J. Clin. Monit. 12, 387–395 (1996)CrossRefGoogle Scholar
  22. 22.
    W. Schneider, G. Hildebrandt, H.-J. Sinell, Fleischwirtschaft 63, 1198–1205 (1983)Google Scholar
  23. 23.
    H. Schmidt, K. Sowoidnich, H.-D. Kronfeldt, Appl. Spectrosc. 64, 888–894 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    H. Schmidt, R. Scheier, D.L. Hopkins, Meat Sci. 93, 138–143 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 1627–1639 (1964)ADSCrossRefGoogle Scholar
  26. 26.
    R. Chizzolini, E. Novelli, A. Badiani, P. Rosa, G. Delbono, Meat Sci. 34, 49–77 (1993)CrossRefGoogle Scholar
  27. 27.
    J.R. Bendall, Meat Sci. 3, 143–157 (1979)CrossRefGoogle Scholar
  28. 28.
    G. Cassanas, M. Morssli, E. Fabrègue, L. Bardet, J. Raman Spectrosc. 22, 409–413 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    J. De Gelder, K. De Gussem, P. Vandenabeele, L. Moens, J. Raman Spectrosc. 38, 1133–1147 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    D.K. Pedersen, S. Morel, H.J. Andersen, S.B. Engelsen, Meat Sci. 65, 581–592 (2003)CrossRefGoogle Scholar
  31. 31.
    M. Pezolet, M. Pigeon-Gosselin, J.-P. Caille, Biochim. Biophys. Acta 533, 263–269 (1978)CrossRefGoogle Scholar
  32. 32.
    M. Pézolet, M. Pigeon, D. Ménard, J.-P. Caillé, Biophys. J. 53, 319–325 (1988)CrossRefGoogle Scholar
  33. 33.
    R.C. Lord, G.J. Thomas Jr, Spectrochim. Acta A 23, 2551–2591 (1967)ADSCrossRefGoogle Scholar
  34. 34.
    J.-M. Delabar, W. Guschlbauer, Biopolymers 18(8), 2073–2089 (1979)CrossRefGoogle Scholar
  35. 35.
    R. Escobar, P. Carmona, A. Rodríguez-Casado, M. Molina, Talanta 48, 773–780 (1999)CrossRefGoogle Scholar
  36. 36.
    A. Schäfer, K. Rosenvold, P.P. Purslow, H.J. Andersen, P. Henckel, Meat Sci. 61, 355–366 (2002)CrossRefGoogle Scholar
  37. 37.
    N. Battle, M.-C. Aristoy, F. Toldrá, J. Food Sci. 66(1), 68–71 (2001)CrossRefGoogle Scholar
  38. 38.
    J. Twardowski, I. Nowak, D.J. Stufkens, T.L. Snoeck, Biochim. Biophys. Acta 790(1), 70–77 (1984)CrossRefGoogle Scholar
  39. 39.
    T.W. Barrett, Spectrochim. Acta A 37(4), 233–239 (1981)ADSCrossRefGoogle Scholar
  40. 40.
    D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, Boston, 1991)Google Scholar
  41. 41.
    H.C. Bertram, S. Dønstrup, A.H. Karlsson, H.J. Andersen, H. Stødkelde-Jørgensen, Magn. Reson. Imaging 19, 993–1000 (2001)CrossRefGoogle Scholar
  42. 42.
    R.N. Sayre, E.J. Briskey, J. Food Sci. 28(6), 675–679 (1963)CrossRefGoogle Scholar
  43. 43.
    C. Lopez-Bote, P.D. Warriss, S.N. Brown, Meat Sci. 26, 167–175 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Research Centre of Food QualityUniversity BayreuthKulmbachGermany

Personalised recommendations