Advertisement

Applied Physics B

, Volume 111, Issue 1, pp 75–87 | Cite as

High-energy femtosecond laser pulse compression in single- and multi-ionization regime of rare gases: experiment versus theory

  • T. Auguste
  • C. Fourcade Dutin
  • A. Dubrouil
  • O. Gobert
  • O. Hort
  • E. Mével
  • S. Petit
  • E. Constant
  • D. Descamps
Article

Abstract

We report experimental and numerical results on the post-compression of 40 fs duration pulses down to 10 fs at high energy level (multi-mJ). The spectral broadening is achieved through the self-phase modulation resulting from optical-field-ionization of different noble gases (He, Ne, Ar) by the 40-fs laser pulse propagating in a low-pressure gas-filled hollow capillary. We discuss the influence of the multi-ionization dynamics, through the gas dependence, on the laser energy carried by the capillary, as well as on the duration and temporal shape of the post-compressed pulses. In all the different experimental conditions investigated in this article (pressures and gases used), the experimental data is in good agreement with the numerical results from a three-dimension propagation code. Through this study, we demonstrate the robustness of the proposed post-compression technique with regard to multi-ionization, indicating that it can be used on a large intensity range by judiciously choosing the gas.

Keywords

Group Velocity Dispersion Spectral Phase Ionization Charge State Mbar Pressure Light Grey Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank C. Medina, R. Bouillaud, and L. Merzeau for their technical assistance. This work is supported by the Conseil Regional d’Aquitaine (COLA2 2.1.3 09010502), the European Union (EU) (LaserLabII ALADIN) and the Agence Nationale de la Recherche (ANR-09- BLAN-0031-02).

References

  1. 1.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    M. Nisoli, S. Sansone, Prog. Quantum Electron. 33, 17 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    P. Corkum, N. Burnett, M. Ivanov, Opt. Lett. 19, 1870 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    I. Christov, M. Murnane, H. Kapteyn, Phys. Rev. Lett. 78, 1251 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    G. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, New J. Phys. 8, 19 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    V.V. Strelkov, E. Mével, E. Constant, New J. Phys. 10, 083040 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    E. Goulielmakis, V.S. Yakovlev, A.L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, F. Krausz, Science 320, 1614 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, M. Nisoli, Nat. Photonics 4, 875 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    P. Heissler, R. Hörlein, J.M. Mikhailova, L. Waldecker, P. Tzallas, A. Buck, K. Schmid, C.M.S. Sears, F. Krausz, L. Veisz, M. Zepf, G.D. Tsakiris, Phys. Rev. Lett. 108, 235003 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419, 803 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nature 427, 817 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    E. Goulielmakis, V.S. Yakovlev, A.L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, F. Krausz, Science 317, 769 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    C. Hauri, W. Kornelis, F. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Appl. Phys. B 79, 673 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    M. Nisoli, S. De Silvestri, O. Svelto, Appl. Phys. Lett. 68, 2793 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, F. Krausz, Appl. Phys. B 65, 189 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, K. Midorikawa, Opt. Lett. 35, 1887 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens, Laser Phys. 21, 198 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    G. Tempea, T. Brabec, Opt. Lett. 23, 762 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, A. Mysyrowicz, J. Opt. Soc. Am. B 19, 1117 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    N. Ishii, L. Turi, V.S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, A. Piskarskas, Opt. Lett. 30, 567 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    F. Tavella, A. Marcinkevicius, F. Krausz, Opt. Express 14, 12822 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, F. Krausz, Opt. Lett. 34, 2459 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    C. Fourcade Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, D. Descamps, Opt. Lett. 35, 253 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    T. Auguste, O. Gobert, C. Fourcade Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, D. Descamps, J. Opt. Soc. Am. B. 29, 1277 (2012)CrossRefGoogle Scholar
  26. 26.
    E. Yablonovitch, Phys. Rev. Lett. 60, 795 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 23, 924 (1966)ADSGoogle Scholar
  28. 28.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 24, 207 (1967)ADSGoogle Scholar
  29. 29.
    A. Perelomov, V. Popov, Sov. Phys. JETP 25, 336 (1967)ADSGoogle Scholar
  30. 30.
    M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64, 1191 (1986)Google Scholar
  31. 31.
    T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, C. Manus, Opt. Commun. 89, 145 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    E.A. Marcatili, R.A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964)Google Scholar
  33. 33.
    R. Trebino, K. Delong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, D. Kane, Rev. Sci. Instrum. 68, 3277 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, K. Nagasaka, J. Opt. Soc. Am. B 20, 2002 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran (Cambridge University, Cambridge, 1992), pp. 701–740zbMATHGoogle Scholar
  37. 37.
    O.B. Danilov, M.I. Zintchenko, YuA Rubinov, E.N. Sosnov, J. Opt. Soc. Am. B 7, 1785 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    S. Augst, D. Strickland, D.D. Meyerhofer, S.L. Chin, J.H. Eberly, Phys. Rev. Lett. 63, 2212 (1989)ADSCrossRefGoogle Scholar
  39. 39.
    C. Courtois, B. Cros, G. Malka, G. Matthieussent, J.R. Marquès, N. Blanchot, J.L. Miquel, J. Opt. Soc. Am. B 17, 864 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • T. Auguste
    • 1
  • C. Fourcade Dutin
    • 2
  • A. Dubrouil
    • 2
  • O. Gobert
    • 1
  • O. Hort
    • 2
  • E. Mével
    • 2
  • S. Petit
    • 2
  • E. Constant
    • 2
  • D. Descamps
    • 2
  1. 1.CEA-Saclay, IRAMIS/Service des PhotonsAtomes et MoléculesGif-sur-Yvette CedexFrance
  2. 2.Université de Bordeaux—CNRS—CEA, Centre Lasers Intenses et ApplicationsTalence CedexFrance

Personalised recommendations