Advertisement

Applied Physics B

, Volume 111, Issue 1, pp 39–43 | Cite as

Environmentally stable picosecond Yb fiber laser with low repetition rate

  • M. BaumgartlEmail author
  • J. Abreu-Afonso
  • A. Díez
  • M. Rothhardt
  • J. Limpert
  • A. Tünnermann
Article

Abstract

A SESAM-mode-locked, all-polarization-maintaining Ytterbium fiber laser producing picosecond pulses with narrow spectral bandwidth is presented. A simple linear all-fiber cavity without dispersion compensation is realized using a uniform fiber Bragg grating (FBG). Different cavity lengths are investigated and repetition rates down to 0.7 MHz are obtained. Bandwidth and pulse duration of the output pulses are mainly determined by the choice of FBG. Pulses between 30 and 200 ps are generated employing different FBGs with bandwidths between 17 and 96 pm. The experimental results are in good agreement with numerical simulations. The laser holds great potential for simple amplification setups without pulse picking.

Keywords

Repetition Rate Pump Power Fiber Laser Spectral Width Fiber Bragg Grating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF) [13N10773]; and the Ministerio de Economía y Competitividad of Spain [TEC2008-05490]. M.B. acknowledges support from the Carl-Zeiss-Stiftung.

References

  1. 1.
    X. Chen, X. Liu, Short pulsed laser machining: how short is short enough? J. Laser Appl. 11, 268–272 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    R.D. Peterson, K.L. Schepler, Timing modulation of a 40-MHz laser-pulse train for target ranging and identification. Appl. Opt. 42, 7191–7196 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, A. Tünnermann, Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy, Opt. Express 20, 26583–26595 (2012)Google Scholar
  4. 4.
    M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, A. Tünnermann, All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion. Opt. Express 20, 4484–4493 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, A. Tünnermann, Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing. Opt. Express 20, 21010–21018 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    R. Herda, O.G. Okhotnikov, Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror. IEEE J. Quantum Electron. 40, 893 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A. Chong, J. Buckley, W. Renninger, F. Wise, All-normal-dispersion femtosecond fiber laser. Opt. Express 14, 10095–10100 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    A. Chong, W. Renninger, F. Wise, Properties of normal-dispersion femtosecond fiber lasers. J. Opt. Soc. Am. B 25, 140–148 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    L. Zhao, D. Tang, J. Wu, Gain-guided soliton in a positive group-dispersion fiber laser. Opt. Lett. 31, 1788–1790 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    W.H. Renninger, A. Chong, F.W. Wise, Giant-chirp oscillators for short-pulse fiber amplifiers. Opt. Lett. 33, 3025–3027 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Baumgartl, B. Ortaç, J. Limpert, A. Tünnermann, Impact of dispersion on pulse dynamics in chirped-pulse fiber lasers. Appl. Phys. B 107, 263–274 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    X. Tian, M. Tang, X. Cheng, P. Shum, Y. Gong, C. Lin, High-energy wave-breaking-free pulse from allfibermode-locked laser system. Opt. Express 17, 7222–7227 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Baumgartl, B. Ortaç, T. Schreiber, J. Limpert, A. Tünnermann, Ultrashort pulse formation and evolution in mode-locked fiber lasers. Appl. Phys. B 104, 523–536 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Kobtsev, S. Kukarin, Y. Fedotov, Ultra-low repetition rate mode-locked fiber laser with high-energy pulses. Opt. Express 16, 21936–21941 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    L.J. Kong, X.S. Xiao, C.X. Yang, Low-repetition-rate all-fiber all-normal-dispersion Yb-doped mode-locked fiber laser. Laser Phys. Lett. 7, 359–362 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    E. Kelleher, J. Travers, E. Ippen, Z. Sun, A. Ferrari, S. Popov, J. Taylor, Generation and direct measurement of giant chirp in a passively mode-locked laser. Opt. Lett. 34, 3526–3528 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J. Lægsgaard, Control of fibre laser mode-locking by narrow-band Bragg gratings. J Phys. B: At. Mol. Opt. Phys. 41, 095401 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M. Baumgartl, B. Ortaç, C. Lecaplain, A. Hideur, J. Limpert, A. Tünnermann, Sub-80 fs dissipative soliton large-mode-area fiber laser. Opt. Lett. 35, 2311 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    D. Turchinovich, X. Liu, J. Lægsgaard, Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber. Opt. Express 16, 14004–14014 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    B. Ortaς, M. Plötner, T. Schreiber, J. Limpert, A. Tünnermann, Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers. Opt. Express 15, 15595–15602 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    E. Lindner, M. Becker, M. Rothhardt, H. Bartelt, Generation and characterization of first order fiber Bragg gratings with Bragg wavelengths in the visible spectral range. Opt. Commun. 281, 4612–4615 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Baumgartl
    • 1
    Email author
  • J. Abreu-Afonso
    • 2
  • A. Díez
    • 2
  • M. Rothhardt
    • 3
  • J. Limpert
    • 1
  • A. Tünnermann
    • 1
    • 4
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Departmento de Física Aplicada-ICMUVUniversidad de ValenciaBurjassotSpain
  3. 3.Institute of Photonic Technology (IPHT)JenaGermany
  4. 4.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations