Advertisement

Applied Physics B

, Volume 110, Issue 3, pp 299–302 | Cite as

Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm

  • Hakan Sayinc
  • Mateusz Wysmolek
  • Jose M. Chavez Boggio
  • Roger Haynes
  • Martin M. Roth
  • Uwe Morgner
  • Jörg Neumann
  • Dietmar Kracht
Rapid Communication

Abstract

To our knowledge, efficient generation of broadband four-wave mixing cascades centered at 1 μm and spanning 600 nm is experimentally demonstrated for the first time. This frequency comb is generated from a two-tone seed with a maximum peak power of 25 W in a low-dispersion photonic crystal fiber. It consists of up to 44 new idler waves generated symmetrically around the seed.

Keywords

Peak Power Photonic Crystal Fiber Amplify Spontaneous Emission Pump Wavelength Frequency Comb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the German Research Foundation (DFG) for funding the Cluster of Excellence Centre for Quantum Engineering and Space-Time Research (QUEST) and the Federal Ministry of Education and Research (BMBF) for financially supporting innoFSPEC under grant No. 03Z2AN11.

References

  1. 1.
    J.J. McFerran, L. Nenadovic, W.C. Swann, J.B. Schlager, N.R. Newbury, Opt. Express 15, 13155–13166 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    J. Bland-Hawthorn, P. Kern, Opt. Express 17, 1880–1884 (2009)Google Scholar
  3. 3.
    T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Science 332, 555–559 (2011)Google Scholar
  4. 4.
    S. Yamashita, M. Shahed, IEEE Photon. Technol. Lett. 18, 1064–1066 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg, Nature 450(7173), 1214–1217 (2007)Google Scholar
  6. 6.
    C. Lee, S.T. Chu, B.E. Little, J. Bland-Hawthorn, S. Leon-Saval, Opt. Express 20, 16671–16676 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A.C. Sodre, J.M. Chavez Boggio, A.A. Rieznik, H.E. Hernandez-Figueroa, H.L. Fragnito, J.C. Knight, Opt. Express 16, 2816–2828 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    C.J. McKinstrie, M.G. Raymer, Opt. Express 14, 9600–9610 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    M.E. Marhic, A.A. Rieznik, G. Kalogerakis, C. Braimiotis, H.L. Fragnito, L.G. Kazovsky, Opt. Express 16, 3610–3622 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S.A. Cerqueira, J.D. Marconi, A.A. Rieznik, H.E. Hernandez-Figueroa, H.L. Fragnito, J.C. Knight, OFC/NFOEC (2008)Google Scholar
  11. 11.
    A. Bogris, D. Syvridis, J. Lightwave Technol. 21, 1892–1902 (2003)Google Scholar
  12. 12.
    M.W. Lee, T. Sylvestre, M. Delqué, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, H. Maillotte, J. Lightwave Technol. 28, 2173–2178 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, D. Kracht, Opt. Express 19, 1854–1859 (2011)Google Scholar
  14. 14.
    G.P. Agrawal, in Nonlinear Fiber Optics, ed. by P.L. Kelley, I.P. Kaminov, G.P. Agrawal (Academic Press, 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hakan Sayinc
    • 1
    • 2
  • Mateusz Wysmolek
    • 1
  • Jose M. Chavez Boggio
    • 4
  • Roger Haynes
    • 4
  • Martin M. Roth
    • 4
  • Uwe Morgner
    • 1
    • 2
    • 3
  • Jörg Neumann
    • 1
    • 2
  • Dietmar Kracht
    • 1
    • 2
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany
  2. 2.Centre for Quantum Engineering and Space-Time Research, QUESTHannoverGermany
  3. 3.Institut für Quantenoptik, Leibniz Universität HannoverHannoverGermany
  4. 4.innoFSPEC-VKS, Leibniz-Institut für Astrophysik PotsdamPotsdamGermany

Personalised recommendations