Applied Physics B

, Volume 110, Issue 4, pp 497–508 | Cite as

Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing

  • K. Sun
  • X. Chao
  • R. Sur
  • J. B. Jeffries
  • R. K. Hanson


A general model for 1f-normalized wavelength modulation absorption spectroscopy with nf detection (i.e., WMS-nf) is presented that considers the performance of injection-current-tuned diode lasers and the reflective interference produced by other optical components on the line-of-sight (LOS) transmission intensity. This model explores the optimization of sensitive detection of optical absorption by species with structured spectra at elevated pressures. Predictions have been validated by comparison with measurements of the 1f-normalized WMS-nf (for n = 2–6) lineshape of the R(11) transition in the 1st overtone band of CO near 2.3 μm at four different pressures ranging from 5 to 20 atm, all at room temperature. The CO mole fractions measured by 1f-normalized WMS-2f, 3f, and 4f techniques agree with calibrated mixtures within 2.0 %. At conditions where absorption features are significantly broadened and large modulation depths are required, uncertainties in the WMS background signals due to reflective interference in the optical path can produce significant error in gas mole fraction measurements by 1f-normalized WMS-2f. However, such potential errors can be greatly reduced by using the higher harmonics, i.e., 1f-normalized WMS-nf with n > 2. In addition, less interference from pressure-broadened neighboring transitions has been observed for WMS with higher harmonics than for WMS-2f.


Background Signal Modulation Depth Tunable Diode Laser Wavelength Modulation Spectroscopy Reflective Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Energy Technology Laboratory of the Department of Energy, with Dr. Susan Maley as the contractor monitor; and by the Air Force Office of Scientific Research, with Dr. Chiping Li as the contract monitor.


  1. 1.
    R.K. Hanson, Proc Combust Inst 33, 1–40 (2011)CrossRefGoogle Scholar
  2. 2.
    M.G. Allen, Meas Sci Technol 9, 545–562 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    P. Werle, Spectrochimica Acta Part A 54, 197–236 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wolfrum, Proc Combust Inst 27, 1–41 (1998)Google Scholar
  5. 5.
    J.A. Silver, Appl Opt 31, 707–717 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    D.T. Cassidy, J. Reid, Appl Opt 21, 1185–1190 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    P. Werle, Spectrochimica Acta Part A 52, 805–822 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl Opt 39, 5579–5589 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    J.B. Jeffries, A. Fahrland, W. Min, R.K. Hanson, D. Sweeney, D. Wagner, K.J. Whitty, 2009 Int. Pittsburgh Coal Conference, Pittsburgh (2009)Google Scholar
  10. 10.
    X. Chao, J.B. Jeffries, R.K. Hanson, Measurement Science and Technology 20, 115201 (9 pp) (2009)Google Scholar
  11. 11.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229–236 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    J. Reid, J. Shewchun, B.S. Garside, A.E. Ballik, Appl Opt 17, 300–307 (1978)ADSCrossRefGoogle Scholar
  13. 13.
    T. Aizawa, Appl Opt 40, 4894–4903 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J. Reid, D. Labrie, Appl. Phys. B 26, 203–210 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    L.C. Philippe, R.K. Hanson, Appl Opt 32, 6090–6103 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    D.T. Cassidy, L.J. Bonnell, Appl Opt 27, 2688–2693 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    R. Arndt, J Appl Phys 36, 2522–2524 (1965)ADSCrossRefGoogle Scholar
  18. 18.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, App. Opt. 43, 6500–6509 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    O. Axner, P. Kluczynski, A.M. Lindberg, J Quant Spectrosc Radiat Transfer 68, 299–317 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    P. Klucczynski, O. Axner, Appl Opt 38, 5803–5815 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    P. Kluczynski, A. Lindberg, O. Axner, Appl Opt 40, 783–793 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl Opt 45, 1052–1061 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    G.B. Rieker, X. Liu, H. Li, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 87, 169–178 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl Opt 48, 5546–5560 (2009)CrossRefGoogle Scholar
  25. 25.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, App. Phys. B 94, 51–63 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    A. Farooq, J.B. Jeffries, R.K. Hanson, J Quant Spectrosc Radiat Transfer 111, 949–960 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    J. Gustafsson, O. Axner, Spectrochimica Acta Part B 58, 143–152 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    J. Gustafsson, N. Chekalin, O. Axner, Spectrochimica Acta Part B 58, 123–141 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    P. Kluczynski, A. Lindberg, O. Axner, Appl Opt 40, 794–804 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    C.R. Webster, J. Opt. Soc. Am. B 2, 1464–1470 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    X. Chao, J.B. Jeffries, R.K. Hanson, Appl. Phys B 106, 987–997 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Rad. Transfer 111, 2139–2150 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    P. Kluczynski, J. Gustafsson, A. Lindberg, O. Axner, Spectrochimica Acta Part B 56, 1277–1354 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • K. Sun
    • 1
  • X. Chao
    • 1
  • R. Sur
    • 1
  • J. B. Jeffries
    • 1
  • R. K. Hanson
    • 1
  1. 1.Department of Mechanical Engineering, High Temperature Gasdynamics LaboratoryStanford UniversityStanfordUSA

Personalised recommendations