Advertisement

Applied Physics B

, Volume 110, Issue 4, pp 465–470 | Cite as

Subhertz-linewidth infrared frequency source with a long-term instability below 5 × 10−15

  • S. M. F. Raupach
  • T. Legero
  • C. Grebing
  • Ch. Hagemann
  • T. Kessler
  • A. Koczwara
  • B. Lipphardt
  • M. Misera
  • H. Schnatz
  • G. Grosche
  • U. Sterr
Article

Abstract

Distributing a stable, absolute optical reference frequency via fiber network would serve research and development in academia and industry. Lasers stabilized to high-finesse Fabry–Pérot cavities can achieve fractional frequency instabilities of less than 10−15 for periods up to several seconds. Their instabilities increase for longer averaging times due to a variable frequency drift, with a linear drift component of the order of 10…100 mHz/s. Hydrogen masers, on the other hand, yield an instability floor of a few parts in 10−15, but suffer from poor stabilities on short timescales. We demonstrate an infrared optical frequency source that combines a cavity-stabilized laser with a hydrogen maser to achieve a residual fractional frequency instability better than 5 × 10−15 for all averaging times from 0.4 up to 10,000 s. The frequency drift of the system over a period of 40,000 s is less than 30 µHz/s. For obtaining absolute frequency accuracy, the hydrogen maser is referenced to a primary frequency standard.

Keywords

Beat Frequency Frequency Drift Frequency Comb Fiber Link Slave Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank A. Bauch for providing the maser signals and for very helpful comments and discussions, as well as S. Weyers for providing the cesium fountain data and for helpful comments. This work was supported by the European Metrological Research Programme EMRP under SIB-02 NEAT-FT and IND 014. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Support by the Centre of Quantum Engineering and Space-Time Research (QUEST) is gratefully acknowledged. Mention of specific products and trade names is for technical communication only and does not constitute an endorsement or recommendation by PTB.

References

  1. 1.
    K. Predehl, G. Grosche, S.M.F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T.W. Hänsch, Th. Udem, R. Holzwarth, H. Schnatz, Science 336, 441 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Y.Y. Jiang, A.D. Ludlow, N.D. Lemke, R.W. Fox, J.A. Sherman, L.-S. Ma, C.W. Oates, Nat. Photonics 5, 158 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, Nat. Photonics 6, 687 (2012)Google Scholar
  5. 5.
    J. Alnis, A. Matveev, N. Kochalevsky, Th. Udem, T.W. Hänsch, Phys. Rev. A 77, 053809 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    C.G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, T.W. Hänsch, Phys. Rev. Lett. 107, 203001 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    N.D. Lemke, A.D. Ludlow, Z.W. Barber, T.M. Fortier, S.A. Diddams, Y. Jiang, S.R. Jefferts, T.P. Heavner, T.E. Parker, C.W. Oates, Phys. Rev. Lett. 103, 063001 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    St. Falke, H. Schnatz, J.S.R. Vellore Winfred, Th. Middelmann, St. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, Ch. Lisdat, Metrologia 48, 399 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    N. Huntemann, N. Okhapkin, B. Lipphardt, S. Weyers, Chr. Tamm, E. Peik, Phys. Rev. Lett. 108, 090801 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    O. Terra, G. Grosche, H. Schnatz, Opt. Express 18, 16102 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    P. Dubé, A.A. Madej, J.E. Bernard, L. Marmet, A.D. Shiner, Appl. Phys. B 95, 43 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R. Storz, C. Braxmaier, K. Jäck, O. Pradl, S. Schiller, Opt. Lett. 23, 1031 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasilyev, A. Nevsky, S. Schiller, Phys. Rev. Lett. 107, 223202 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    M.J. Thorpe, L. Rippe, T.M. Fortier, M.S. Kirchner, T. Rosenband, Nat. Photonics 5, 688 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J. Reichert, M. Nierung, R. Holzwarth, M. Weitz, Th. Udem, T.W. Hänsch, Phys. Rev. Lett. 84, 3232 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    A. Bauch, S. Weyers, D. Piester, E. Staliuniene, W. Yang, Metrologia 49, 180 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, H. Schnatz, Appl. Phys. B 97, 541 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E.M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, G. Grosche, Opt. Express 18, 21477–21483 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Weyers, B. Lipphardt, H. Schnatz, Phys. Rev. A 79, 031803 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    P. Kubina, P. Adel, F. Adler, G. Grosche, T.W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, H. Schnatz, Opt. Express 13, 904–909 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    J.D.H. Alexander, Electron. Lett. 11, 541 (1975)ADSCrossRefGoogle Scholar
  24. 24.
    G. Kramer, W. Klische, in Proc. IEEE Int. Symp. Time Freq. 144 (2001)Google Scholar
  25. 25.
    S.T. Dawkins, J.J. McFerran, A.N. Luiten, IEEE Trans. Ultras. Ferroel. Freq. Control 54, 918–925 (2007)CrossRefGoogle Scholar
  26. 26.
    A. Bartels, C.W. Oates, L. Hollberg, S.A. Diddams, Opt. Lett. 29, 1081 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, F.-L. Hong, Opt. Express 18, 1667 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    F. Kéfélian, H. Jiang, P. Lemonde, G. Santarelli, Opt. Lett. 34, 914 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    D.R. Leibrandt, M.J. Thorpe, J.C. Bergquist, T. Rosenband, Opt. Express 19, 10278–10286 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Mention of specific products and trade names is for technical communication only and does not constitute an endorsement or recommendation by PTB.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. M. F. Raupach
    • 1
  • T. Legero
    • 1
  • C. Grebing
    • 1
  • Ch. Hagemann
    • 1
  • T. Kessler
    • 1
  • A. Koczwara
    • 1
  • B. Lipphardt
    • 1
  • M. Misera
    • 1
  • H. Schnatz
    • 1
  • G. Grosche
    • 1
  • U. Sterr
    • 1
  1. 1.Physikalisch Technische Bundesanstalt (PTB)BraunschweigGermany

Personalised recommendations