Applied Physics B

, Volume 110, Issue 3, pp 375–380 | Cite as

Effects of initial humidity and temperature on laser-filamentation-induced condensation and snow formation

  • Jingjing Ju
  • Jiansheng Liu
  • Cheng Wang
  • Haiyi Sun
  • Wentao Wang
  • Xiaochun Ge
  • Chuang Li
  • See Leang Chin
  • Ruxin Li
  • Zhizhan Xu
Article

Abstract

We investigated the effects of initial humidity and temperature on the formation of water condensation and various snowflake patterns by firing high-repetition filaments of femtosecond Ti-sapphire laser pulses at 9 mJ/50 fs per pulse into a cloud chamber. While adjusting initial temperature and humidity distributions near the filaments, snowflakes and ice particles with various shapes and sizes were observed on the bottom cold plate. In addition, significant differences were found in the weights of the laser-induced snow below the filament center. From those data, initial conditions of low temperature (<−15 °C) and high humidity (relative to water RHw > (90 ± 11) % and to ice RHi > (120 ± 15) %) were found being important to assist an efficient laser-filamentation-induced condensation and snow formation.

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (Contract No: 2010CB923203, 2011CB808100), National Natural Science Foundation of China (Contract Nos: 60921004, 10974214, 61008011), Shanghai science and technology talent project (12XD1405200), the State Key Laboratory Program of Chinese Ministry of Science and Technology. See Leang Chin acknowledges the support of Canada Research Chairs, Natural Science and Engineering Research Council, and Quebec Fund for Nature and Technology Research.

References

  1. 1.
    P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W.M. Nakaema, Y. Petit, M. Queißer, R. Salamé, E. Salmon, L. Wöste, J.-P. Wolf, Laser-induced water condensation in air. Nat. Photon. 4, 45–456 (2010)CrossRefGoogle Scholar
  2. 2.
    J. Kasparian, L. Wöste, J.-P. Wolf, Laser-based weather control. Opt. Photon. News 21, 22–27 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Petit, S. Henin, J. Kasparian, J.-P. Wolf, Production of ozone and nitrogen oxides by laser filamentation. Appl. Phys. Lett. 97, 021108 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Petit, S. Henin, J. Kasparian, J.-P. Wolf, P. Rohwetter, K. Stelmaszczyk, Z.Q. Hao, W.M. Nakaema, L. Wöste, A. Vogel, T. Pohl, K. Weber, Influence of pulse duration, energy, and focusing on laser-assisted water condensation. Appl. Phys. Lett. 98, 041105 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S. Hennin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z.Q. Hao, W.M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, J.-P. Wolf, Field measurements suggest the mechanism of laser-assisted water condensation. Nat. Commun. 2, 456 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wöste, J.-P. Wolf, Multijoule scaling of laser-induced condensation in air. Appl. Phys. Lett. 99, 141103 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 44, 47–189 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, S.L. Chin, Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 72, 026412 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges. Can. J. Phys. 83(43), 863–905 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, L. Wöste, White-light filaments for atmospheric analysis. Science 30, 61–64 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S.L. Chin, R. Li, Z. Xu, Laser-filamentation-induced condensation and snow formation in a cloud chamber. Opt. Lett. 37, 1214–1216 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Kate, P. Mirabel, Calculation of supersaturation profiles in thermal diffusion cloud chambers. J. Atmos. Sci. 32, 646–652 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    D.M. Murphy, T. Koop, Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 131, 1539–1565 (2005)CrossRefGoogle Scholar
  15. 15.
    R.M. Measures, Laser-Remote sensing-Fundamentals and Applications (Wiley Interscience, New York, 442–457, 1984)Google Scholar
  16. 16.
    N.H. Fletcher, The physics of rainclouds (Cambridge University Press, London, p 390, 1966)Google Scholar
  17. 17.
    U. Nakaya, Snow crystals. Am. J. Phys. 22, 573 (1954)ADSCrossRefGoogle Scholar
  18. 18.
    K.G. Libbrecht, The physics of snow crystals. Rep. Prog. Phys. 68, 855–895 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jingjing Ju
    • 1
  • Jiansheng Liu
    • 1
  • Cheng Wang
    • 1
  • Haiyi Sun
    • 1
  • Wentao Wang
    • 1
  • Xiaochun Ge
    • 1
  • Chuang Li
    • 1
  • See Leang Chin
    • 2
  • Ruxin Li
    • 1
  • Zhizhan Xu
    • 1
  1. 1.State Key Laboratory of High Field Laser PhysicsShanghai Institute of Optics and Fine Mechanics, Chinese Academy of SciencesShanghaiChina
  2. 2.Center for Optics, Photonics and LaserLaval UniversityQuebec CityCanada

Personalised recommendations