Applied Physics B

, Volume 110, Issue 3, pp 359–365 | Cite as

Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 μm laser absorption sensor

  • Xing Chao
  • Jay B. Jeffries
  • Ronald K. Hanson


A real-time, in situ CO sensor using 2.3 μm DFB diode laser absorption, with calibration-free wavelength-modulation-spectroscopy, was demonstrated for continuous monitoring in the boiler exhaust of a pulverized-coal-fired power plant up to temperatures of 700 K. The sensor was similar to a design demonstrated earlier in laboratory conditions, now refined to accommodate the harsh conditions of utility boilers. Measurements were performed across a 3 m path in the particulate-laden economizer exhaust of the coal-fired boiler. A 0.6 ppm detection limit with 1 s averaging was estimated from the results of a continuous 7-h-long measurement with varied excess air levels. The measured CO concentration exhibited expected inverse trends with the excess O2 concentration, which was varied between 1 and 3 %. Measured CO concentrations ranged between 6 and 200 ppm; evaluation of the data suggested a dynamic range from 6 to 10,000 ppm based on a minimum signal-to-noise ratio of ten and maximum absorbance of one. This field demonstration of a 2.3 μm laser absorption sensor for CO showed great potential for real-time combustion exhaust monitoring and control of practical combustion systems.


Boiler Environment Combustion Exhaust Continuous Emission Monitoring Practical Combustion System Diode Laser Absorption Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support was provided by the Electric Power Research Institute with Mr. Richard Himes as program manager and the Air Force Office of Scientific Research with Dr. Chiping Li as program manager. EPRI also arranged access to the coal-fired power plant in Charlotte, NC.


  1. 1.
    US environmental protection agency, carbon monoxide national ambient air quality standards: scope and methods plan for health risk and exposure assessment, April 2009, available at
  2. 2.
    US environment protection agency, continuous emissions monitoring fact sheet, available at
  3. 3.
    R.K. Hanson, Proc. Comb. Inst. 33, 1 (2011)CrossRefGoogle Scholar
  4. 4.
    K. Kohse-Höinghaus, J.B. Jeffries (eds.), Applied Combustion Diagnostics (Taylor and Francis, London, 2002)Google Scholar
  5. 5.
    M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Comb. Inst. 30, 89 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Deguchi, M. Noda, M. Abe, Proc. Comb. Inst. 29, 147 (2002)CrossRefGoogle Scholar
  9. 9.
    J. Wang, M. Maiorov, D.S. Baer, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Appl. Opt. 39, 5579 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    J. Wang, M. Maiorov, J.B. Jeffries, D.Z. Garbuzov, J.C. Connolly, R.K. Hanson, Meas. Sci. Technol. 11, 1576 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Comb. Inst. 30, 1611 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Chen, A. Hangauer, R. Strzoda, M.C. Amann, Appl. Phys. B 102, 381 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    B.L. Upschulte, D.M. Sonnenfroh, M.G. Allen, Appl. Opt. 38, 1506 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Q.V. Nguyen, B.L. Edgar, R.W. Dibble, A. Gulati, Combust. Flame 100, 395 (1995)CrossRefGoogle Scholar
  15. 15.
    A.R. Awtry, B.T. Fisher, R.A. Moffatt, V. Ebert, J.W. Fleming, Proc. Comb. Inst. 31, 799 (2007)CrossRefGoogle Scholar
  16. 16.
    K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, Combust. Inst. 34 (in press)
  17. 17.
    X. Chao, J.B. Jeffries, R.K. Hanson, Combust. Inst. 34 (in press)
  18. 18.
    K. Sun, X. Chao, R. Sur, J.B. Jeffries, R.K. Hanson, Appl. Phys. B, acceptedGoogle Scholar
  19. 19.
    X. Chao, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 20, 115201 (2009)ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
    D.T. Cassidy, J. Reid, Appl. Opt. 21, 1185 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    X. Zhu, D.T. Cassidy, J. Opt. Soc. Am. B 14, 1945 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)CrossRefGoogle Scholar
  24. 24.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 87, 169 (2007)ADSCrossRefGoogle Scholar
  25. 25.
  26. 26.
    X. Chao, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 106, 987 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xing Chao
    • 1
  • Jay B. Jeffries
    • 1
  • Ronald K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations