Applied Physics B

, Volume 108, Issue 4, pp 799–805 | Cite as

Fast writing of soliton waveguides in lithium niobate using low-intensity blue light

  • S. T. Popescu
  • A. PetrisEmail author
  • V. I. Vlad


We experimentally demonstrate the writing of soliton waveguides in lithium niobate with blue violet light, at λ = 405 nm. This wavelength, obtained from a low-cost laser diode, allows very fast writing of soliton waveguides when comparing with the writing process using green light (532 nm). For the same writing time, there is a decrease of ~4 orders of magnitude of the light intensity necessary for writing soliton waveguides in blue. The writing process is investigated and characterized by tuning parameters, such as beam intensity, external field and beam polarization. The IR guiding capability of these soliton waveguides is tested by guiding femtosecond laser pulses at λ = 1,550 nm.


Soliton External Electric Field Lithium Niobate Input Beam Writing Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the CNCSIS-IDEI project #572. A. Petris thanks ICTP, Trieste, Italy for the research visits in the Centre as Associate Member. V. I. Vlad acknowledges a partial support of Romanian Academy—CASP in this work. S.T. Popescu thanks ICTP for supporting his participation to Winter Colleges on Optics in 2010–2012.


  1. 1.
    M. Segev, Opt. Quant. Electron. 30, 31 (1998)CrossRefGoogle Scholar
  2. 2.
    A.V. Mamaev, M. Saffman, D.Z. Anderson, A.A. Zozulya, Phys. Rev. A 54, 870–879 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    M. Segev, B. Crosignani, A. Yariv, B. Fischer, Phys. Rev. Lett. 68, 923 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Diporto, E.J. Sharp, R.R. Neurgaonkar, Phys. Rev. Lett. 71, 533 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    D. Kip, M. Wesner, V. Shandarov, P. Moretti, Opt. Lett. 23, 921 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    C. Denz, J. Petter, D. Träger, C. Weilnau, Opt. Q. Life, Pts 1 and 2 4829, 505 (2003)Google Scholar
  7. 7.
    E. Fazio, F. Mariani, M. Bertolotti, V. Babin, V. Vlad, J. Opt. A-Pure Appl. Opt. 3, 466 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    E. Fazio, W. Ramadan, M. Bertolotti, A. Petris, V.I. Vlad, J. Opt. A: Pure Appl. Opt. 5, S119 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    E. Fazio, W. Ramadan, A. Belardini, A. Bosco, M. Bertolotti, A. Petris, V.I. Vlad, Phys. Rev. E 67, 026611 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    V. Vlad, E. Fazio, M. Bertolotti, A. Bosco, A. Petris, Appl. Surf. Sci. 248, 484 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, V.I. Vlad, Appl. Phys. Lett. 85, 2193 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    A. Petris, V.I. Vlad, A. Bosco, E. Fazio, M. Bertolotti, J. Optoelectron. Adv. M 7, 2133 (2005)Google Scholar
  13. 13.
    E. Fazio, W. Ramadan, A. Petris, M. Chauvet, A. Bosco, V.I. Vlad, M. Bertolotti, Appl. Surf. Sci. 248, 97 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    V.I. Vlad, A. Petris, A. Bosco, E. Fazio, M. Bertolotti, J. Opt. A: Pure Appl. Opt. 8, S477 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    G. Assanto, C. Conti, M. Peccianti, Int. J. Mod. Phys. B 18, 2819 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    W. Krolikowski, C. Denz, A. Stepken, M. Saffman, B. Luther-Davies, J. Opt. B 10, 823 (1998)Google Scholar
  17. 17.
    W. Krolikowski, B. Luther-Davies, C. Denz, IEEE J. Quant. Electron. 39, 3 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    M. Petrović, D. Träger, A. Strinić, M. Belić, J. Schröder, C. Denz, Phys. Rev. E 68, 055601 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    R.R. Thomson, S. Campbell, I.J. Blewett, A.K. Kar, D.T. Reid, Appl. Phys. Lett. 88, 111109 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    M. Morin, G. Duree, G. Salamo, M. Segev, Opt. Lett. 20, 2066 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    N. Fressengeas, J. Maufoy, G. Kugel, Phys. Rev. E 54, 6866 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    M. Chauvet, J. Opt. Soc. Am. B 20, 2515 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    S.T. Popescu, A. Petris, V.I. Vlad, E. Fazio, J. Optoelectron. Adv. M 12, 19 (2010)Google Scholar
  24. 24.
    S.T. Popescu, A. Petris, V.I. Vlad, E. Fazio, Proc. SPIE 7469, 74690I (2010)Google Scholar
  25. 25.
    S.T. Popescu, A. Petris, V.I. Vlad, E. Fazio, Second Annual Conference of COST Action MP0702: Towards Functional Sub-Wavelength Photonic Structures (Munich, Germany, 2010)Google Scholar
  26. 26.
    S.T. Popescu, A. Petris, V.I. Vlad, E. Fazio, Conference on Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC), Munich, Germany, 2011)Google Scholar
  27. 27.
    E. Fazio, M. Chauvet, V.I. Vlad, A. Petris, F. Pettazzi, V. Coda, M. Alonzo, in Ferroelectric Crystals for Photonic Applications, ed. by P. Ferraro, S. Grilli, P. Natale (Springer, Berlin, 2009), p. 101Google Scholar
  28. 28.
    C. Denz, M. Schwab, C. Weilnau, Transverse-Pattern Formation in Photorefractive Optics (Springer, Berlin, 2003)CrossRefGoogle Scholar
  29. 29.
    M. Kösters, B. Sturman, D. Haertle, K. Buse, Opt. Lett. 34, 1036 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    G.C. Valley, M. Segev, B. Crosignani, A. Yariv, M.M. Fejer, M.C. Bashaw, Phys. Rev. A 50, R4457 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    I. Nee, M. Müller, K. Buse, E. Krätzig, J. Appl. Phys. 88, 4282 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    I. Biaggio, in Photorefractive Materials and their Applications 2: Materials, ed. by P. Gunter, J. P. Huignard (Springer, Berlin, 2007), p. 51Google Scholar
  33. 33.
    M. Segev, M.F. Shih, G.C. Valley, J. Opt. Soc. Am. B 13, 706 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    T. Volk, M. Wöhlecke, in Lithium Niobate, ed. by R. Hull, R.M. Osgood, Jr. J. Parisi, H. Warlimont (Springer, Berlin, 2008)Google Scholar
  35. 35.
    F. Lüdtke, N. Waasem, K. Buse, B. Sturman, Appl. Phys. B 105, 35 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    J.R. Shwesyg, M.C.C. Kajyiama, M. Falk, D.H. Jundt, K. Buse, M.M. Fejer, Appl. Phys. B 100, 109 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    B.I. Sturman, V.M. Fridkin, Ferroelectricity and Related Phenomena (Gordon and Breach Science Publishers, Philadelphia, 1992)Google Scholar
  38. 38.
    M. Alonzo, F. Pettazzi, M. Bazzan, N. Argiolas, M.V. Ciampolillo, B.S. Heidari, C. Sada, D. Wolfersberger, A. Petris, V.I. Vlad, E. Fazio, J. Opt. 12(1), 015206 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    R. Jungen, G. Angelow, F. Laeri, C. Grabmaier, Appl. Phys. A 55, 101 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    A. Méndez, A. Garcia-Cabañes, E. Diéguez, J.M. Cabrera, Electron. Lett. 35(6), 498 (1999)CrossRefGoogle Scholar
  41. 41.
    U. Schlarb, K. Betzler, Phys. Rev. B 48(21), 15613 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    J. Safioui, M. Chauvet, E. Devaux, V. Coda, F. Pettazzi, M. Alonzo, E. Fazio, J. Opt. Soc. Am. B 26, 487 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    A. Petris, S.T. Popescu, V.I. Vlad, E. Fazio, Rom. Rep. Phys. 64, 492 (2012)Google Scholar
  44. 44.

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.National Institute for LaserPlasma and Radiation PhysicsBucharest, MagureleRomania

Personalised recommendations