Advertisement

Applied Physics B

, Volume 109, Issue 1, pp 149–157 | Cite as

Superconducting microwave cavity towards controlling the motion of polar molecules

  • Katsunari EnomotoEmail author
  • Pavle Djuricanin
  • Ilja Gerhardt
  • Omid Nourbakhsh
  • Yoshiki Moriwaki
  • Walter Hardy
  • Takamasa Momose
Article

Abstract

We propose the use of superconducting microwave cavities for the focusing and deceleration of cold polar molecular beams. A superconducting cavity with a high quality factor produces a large ac Stark shift in polar molecules, which allow us to efficiently control molecular motion. Our discussion is based on the experimental characterization of a prototype cavity: a lead–tin-coated cylindrical copper cavity, which has a quality factor of 106 and tolerates several watts of input power. Such a microwave device provides a powerful way to control molecules not only in low-field-seeking states, but also in high-field-seeking states such as the ground rotational state.

Keywords

Quality Factor High Quality Factor Diffraction Loss Unloaded Quality Factor Radial Confinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge D. DeMille and G. Meijer for their helpful advice and M. Schnell, A. Simon, H. Odashima, M. Kajita, F. Matsushima, and K. Kobayashi for their fruitful discussion. We also thank B. Ramshaw and D. Bonn for helping us perform the electroplating. This work is supported by an NSERC Discovery Grant and funds from CFI to CRUCS at UBC. This work is also partially supported by Grant-in-Aid for Scientific Research of JSPS (19840021, 21740300, 22104504), Matsuo foundation, Inamori foundation. K.E. acknowledges support from the Excellent Young Researchers Overseas Visit Program of JSPS for allowing him to visit UBC to perform this research.

References

  1. 1.
    J. Reuss, in Atomic and Molecular Beam Methods, ed. by G. Scoles, D. Bassi, U. Buck, D. Lainé (Oxford University Press, New York, 1988)Google Scholar
  2. 2.
    O. Stern, Z. Phys. 7, 249 (1921)ADSCrossRefGoogle Scholar
  3. 3.
    W. Gerlach, O. Stern, Z. Phys. 9, 353 (1922)ADSCrossRefGoogle Scholar
  4. 4.
    J.D. Weinstein et al., Nature (London) 395, 148 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    H.L. Bethlem et al., Nature 406, 491 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    J. van Veldhoven, H.L. Bethlem, G. Meijer, Phys. Rev. Lett. 94, 083001 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Rangwala, T. Junglen, T. Rieger, P.W.H. Pinkse, G. Rempe, Phys. Rev. A 67, 043406 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    H. Tsuji, T. Sekiguchi, T. Mori, T. Momose, H. Kanamori, J. Phys. B At. Mol. Opt. Phys. 43, 095202 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    N. Vanhaecke, U. Meier, M. Andrist, B.H. Meier, F. Merkt, Phys. Rev. A 75, 031402 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    E. Narevicius et al., Phys. Rev. A 77, 051401 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    R.V. Krems, W.C. Stwalley, B. Friedrich (eds.), Cold Molecules, Theory, Experiment, Applications (CRC Press, Boca Raton, 2009)Google Scholar
  13. 13.
    J.J. Hudson et al., Nature 473, 493 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    T. Junglen, T. Rieger, S.A. Rangwala, P.W.H. Pinkse, G. Rempe, Phys. Rev. Lett. 92, 223001 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    T.E. Wall et al., Phys. Rev. A 80, 043407 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    H.L. Bethlem, A.J.A. van Roij, R.T. Jongma, G. Meijer, Phys. Rev. Lett. 88, 133003 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    M.R. Tarbutt et al., Phys. Rev. Lett. 92, 173002 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    K. Wohlfart et al., Phys. Rev. A 77, 031404 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    H.J. Loesch, B. Scheel, Phys. Rev. Lett. 85, 2709 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    M. Strebel, S. Spieler, F. Stienkemeier, M. Mudrich, Phys. Rev. A 84, 053430 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    R. Fulton, A.I. Bishop, P.F. Barker, Phys. Rev. Lett. 93, 243004 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    R. Fulton, A.I. Bishop, M.N. Shneider, P.F. Barker, Nat. Phys. 2, 465 (2006)CrossRefGoogle Scholar
  23. 23.
    Z. Lan, Y. Zhao, P.F. Barker, W. Lu, Phys. Rev. A 81, 013419 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    V. Vuletić, S. Chu, Phys. Rev. Lett. 84, 3787 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    S. Kuma, T. Momose, New. J. Phys. 11, 055023 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Lan, Y. Zhao, P.F. Barker, W. Lu, Phys. Rev. A 81, 013419 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    D. DeMille, D.R. Glenn, J. Petricka, Eur. Phys. J. D 31, 375 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    D.R. Glenn, Ph.D. thesis, Yale University (2009)Google Scholar
  29. 29.
    K. Enomoto, T. Momose, Phys. Rev. A 72, 061403 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    R. Hill, T. Gallagher, Phys. Rev. A 12, 451 (1975)ADSCrossRefGoogle Scholar
  31. 31.
    H. Odashima, S. Merz, K. Enomoto, M. Schnell, G. Meijer, Phys. Rev. Lett. 104, 253001 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    S. Merz, N. Vanhaecke, W. Jäger, M. Schnell, G. Meijer, Phys. Rev. A 85, 063411 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    M. Kajita, A.V. Avdeenkov, Eur. Phys. J. D 41, 499 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    S.V. Alyabyshev, R.V. Krems, Phys. Rev. A. 80, 033419 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    S.E. Maxwell et al., Phys. Rev. Lett. 95, 173201 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    P. Schmüser, Prog. Part. Nucl. Phys. 49, 155 (2002); and references therein.Google Scholar
  37. 37.
    J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Rep. Prog. Phys. 69, 1325 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    J. Gadhi, A. Lahrouni, J. Legrand, J. Demaison, J. Chim. Phys. 92, 1984 (1995)Google Scholar
  40. 40.
    C.G. Montgomery, Technique of Microwave Measurements (McGraw-Hill, New York, 1947)Google Scholar
  41. 41.
    D.M. Pozar, Microwave Engineering (Wiley, Hoboken, 2005)Google Scholar
  42. 42.
    J. Halbritter, Z. Phys. 238, 466 (1970)ADSCrossRefGoogle Scholar
  43. 43.
    H.A. Bethe, Phys. Rev. 66, 163 (1944)MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    C.J. Bouwkamp, Rep. Prog. Phys. 17, 35 (1954)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    N.A. McDonald, IEEE Trans. Microwav Theory Tech. 20, 689 (1972)ADSCrossRefGoogle Scholar
  46. 46.
    A. Roberts, J. Opt. Soc. Am. A 4, 1970 (1987)ADSCrossRefGoogle Scholar
  47. 47.
    A.Y. Nikitin, D. Zueco, F.J. García-Vidal, L. Martín-Moreno, Phys. Rev. B 78, 165429 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    W.H. Warren Jr, W.G. Bader, Rev. Sci. Instrum. 40, 180 (1968)ADSCrossRefGoogle Scholar
  49. 49.
    D.A. Ackerman, A.C. Anderson, Rev. Sci. Instrum. 53, 1657 (1982)ADSCrossRefGoogle Scholar
  50. 50.
    W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Katsunari Enomoto
    • 1
    Email author
  • Pavle Djuricanin
    • 2
  • Ilja Gerhardt
    • 2
  • Omid Nourbakhsh
    • 3
  • Yoshiki Moriwaki
    • 1
  • Walter Hardy
    • 3
  • Takamasa Momose
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of ToyamaToyamaJapan
  2. 2.Department of ChemistryThe University of British ColumbiaVancouverCanada
  3. 3.Department of Physics and AstronomyThe University of British ColumbiaVancouverCanada

Personalised recommendations