Applied Physics B

, Volume 108, Issue 4, pp 737–741 | Cite as

Investigation of mechanical interactions between the tips of two scanning near-field optical microscopes

  • A. E. KleinEmail author
  • N. Janunts
  • A. Tünnermann
  • T. Pertsch


We describe a method to monitor the distance between two tips of a scanning near-field optical microscope setup. The interaction between the two tips, caused by shear forces and air pressure oscillations between the tips, makes each oscillating tip perform an additional oscillation at the frequency of the other tip. The interaction is detected by analyzing one of the tuning fork signals with a lock-in amplifier locked at the oscillation frequency of the other tuning fork. The resulting signal, called crosstalk, increases sharply only when the scanning tip comes into the immediate vicinity of the stationary one. This effect allows us to prevent the tips from colliding during scanning.


Scanning Line Tuning Fork Crosstalk Signal Acoustic Interaction Aerodynamic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the financial support from the German Research Foundation (DFG) and Jena School for Microbial Communication (JSMC).


  1. 1.
    J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, H. Giessen, Nano Lett. 11, 2819 (2011)CrossRefGoogle Scholar
  2. 2.
    C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, T. Pertsch, Nano Lett. 11, 4400 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    D.K. Gramotnev, M.G. Nielsen, S.J. Tan, M.L. Kurth, S.I. Bozhevolnyi, Nano Lett. 12, 359 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    R. Dallapiccola, C. Dubois, A. Gopinath, F. Stellacci, L. Dal Negro, Appl. Phys. Lett. 94, 243118 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    X. Ren, A. Liu, C. Zou, L. Wang, Y. Cai, F. Sun, G. Guo, G. Guo, Appl. Phys. Lett. 98, 201113 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A. Kaneta, T. Hashimoto, K. Nishimura, M. Funato, Y. Kawakami, Appl. Phys. Express 3, 102102 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    K. Karrai, R.D. Grober, Appl. Phys. Lett. 66, 1842 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    A.G.T. Ruiter, J.A. Veerman, K.O. van der Werf, N.F. van Hulst, Appl. Phys. Lett. 71, 28 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    S. Shalom, K. Lieberman, A. Lewis, S.R. Cohen, Rev. Sci. Instrum. 63, 4061 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    H. Muramatsu, N. Chiba, T. Umemoto, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, Ultramicroscopy 61, 265 (1995)CrossRefGoogle Scholar
  11. 11.
    A. Lewis, K. Lieberman, N. Ben-Ami, G. Fish, E. Khachatryan, U. Ben-Ami, S. Shalom, Ultramicroscopy 61, 215 (1995)CrossRefGoogle Scholar
  12. 12.
    W.H.J. Rensen, N.F. van Hulst, A.G.T. Ruiter, P.E. West, Appl. Phys. Lett. 75, 1640 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    P. Günther, U.C. Fischer, K. Dransfeld, Appl. Phys. B 48, 89 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. E. Klein
    • 1
    Email author
  • N. Janunts
    • 1
  • A. Tünnermann
    • 1
    • 2
  • T. Pertsch
    • 1
  1. 1.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Fraunhofer Institute of Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations