Applied Physics B

, Volume 109, Issue 2, pp 227–232

Effect of refractive index mismatch aberration in arsenic trisulfide

  • Benjamin P. Cumming
  • Sukanta Debbarma
  • Barry Luther-Davies
  • Min Gu
Article

Abstract

We demonstrate compensation for the spherical aberration due to the refractive index mismatch that occurs when a laser beam is focused into a thick arsenic trisulfide (As\(_2\)S\(_3\)) film with a high numerical aperture objective. The effects of the aberration at different focal depths on the point spread function have been calculated numerically and the axial response method shown to be a useful measure for compensating the spherical aberration. We show that with the addition of adaptive optics based on a spatial light modulator, the aberration can be significantly reduced, resulting in an increase in peak intensity by a factor of 2.4 and a decrease in axial elongation by a factor of 2.2.

References

  1. 1.
    W.S. Rodney, I.H. Malitson, T.A. King, J. Opt. Soc. Am. 48, 633–635 (1958)Google Scholar
  2. 2.
    D.W. Hall, M.A. Newhouse, N.F. Borrelli, W.H. Dumbaugh, D.L. Weidman, Appl. Phys. Lett. 54, 1293–1295 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    H. Kobayashi, H. Kanbara, M. Koga, K. Kubodera, J. Appl. Phys. 74, 3683–3687 (1993)Google Scholar
  4. 4.
    R. Frerichs, J. Opt. Soc. Am. A 43, 1153–1157 (1953)ADSCrossRefGoogle Scholar
  5. 5.
    J. Viens, C. Meneghini, A. Villeneuve, T.V. Galstian, E.J. Knystautas, M.A. Duguay, K.A. Richardson, T. Cardinal, J. Lightwave Technol. 17, 1184 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    W.T. Li, Y.L. Ruan, B. Luther-Davies, A. Rode, R. Boswell, J. Vac. Sci. Technol. A 26, 1626–1632 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    T. Han, S. Madden, D. Bulla, B. Luther-Davies, Opt. Express 18, 19286–19291 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, Appl. Phys. Lett. 83, 4480 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, R. Vallée, Opt. Lett. 29, 748–750 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    S. Juodkazis, T. Kondo, H. Misawa, A. Rode, M. Samoc, B. Luther-Davies, Opt. Express 14, 7751–7756 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, R. Thomson, Opt. Lett. 37, 392–394 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Wong, M. Deubel, F. Prez-Willard, S. John, G.A. Ozin, M. Wegener, G. von Freymann, Adv. Mater. 18, 265–269 (2006)CrossRefGoogle Scholar
  13. 13.
    E. Nicoletti, G. Zhou, B. Jia, M.J. Ventura, D. Bulla, B. Luther-Davies, M. Gu, Opt. Lett. 33, 2311–2313 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    E. Nicoletti, D. Bulla, B. Luther-Davies, M. Gu, Opt. Lett. 36, 2248–2250 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    P. Török, P. Varga, Z. Laczik, G.R. Booker, J. Opt. Soc. Am. B 12, 325–332 (1995)CrossRefGoogle Scholar
  16. 16.
    M. Gu, Advanced optical imaging theory (Springer, Heidelberg, 2000)Google Scholar
  17. 17.
    S. Wong, O. Kiowski, M. Kappes, J.K.N. Lindner, N. Mandal, F.C. Peiris, G.A. Ozin, M. Thiel, M. Braun, M. Wegener, G von Freymann. Adv. Mat. 20, 4097–4102 (2008)Google Scholar
  18. 18.
    M. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, S. Miyata, Appl. Phys. Lett. 88, 031109 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, R. Stoian, Opt. Express 16, 5481–5492 (2008)Google Scholar
  20. 20.
    A. Jesacher, M.J. Booth, Opt. Express 18, 21090–21099 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    B.P. Cumming, A. Jesacher, M.J. Booth, T. Wilson, M. Gu, Opt. Express 19, 9419–9425 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    C.J.R. Sheppard, M. Gu, Opt. Commun. 88, 180–190 (1992)Google Scholar
  23. 23.
    M. Born, E. Wolf, Principles of optics (Pergamon, New York, 1980)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Benjamin P. Cumming
    • 1
  • Sukanta Debbarma
    • 2
  • Barry Luther-Davies
    • 2
  • Min Gu
    • 1
  1. 1.Centre for Micro-Photonics, Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Faculty of Engineering and Industrial SciencesSwinburne University of TechnologyHawthornAustralia
  2. 2.Laser Physics Centre, Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS), Research School of Physical Sciences and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations