Applied Physics B

, Volume 108, Issue 4, pp 859–866 | Cite as

Modeling of Sommerfeld surface waves propagating on a single wire of laser plasma filaments

Article

Abstract

We investigated the possibility of Sommerfeld surface waves to propagate along a conducting plasma channel produced by the filamentation of ultrafast laser pulses in air. Using the approximation of a homogenous cylindrical wire of laser plasma filaments, the phase velocity and the propagation loss of different wire configurations are calculated. The phase velocity of the propagating wave proved to be close to the speed of laser pulses, which makes attaching to such instantaneous plasma channel feasible over distances in the order of the filament length. Wire diameter, electron density and operating frequency are appearing to influence the attaching distances and propagation loss. The attenuation of the propagating wave along the plasma wire appears to be lower than that of free space over some distances in the order of the filamentation length, which opens exciting perspectives for short distance point to point wireless transmission of pulsed-modulated microwaves.

Notes

Acknowledgments

This project was supported by National Natural Science Foundation of China under Grant Nos. 60978014, 11074027 and 61178022. Funds from Science and Technology, Department of Jilin Province, Grant No. 20111812, basic fund No. 9140c150302110c1501 and the project-sponsored by SRF for ROCS, SEM.

References

  1. 1.
    A. Sommerfeld, Ann. der Physik und Chemie 67, 233 (1899)ADSCrossRefGoogle Scholar
  2. 2.
    V.N. Datsko, A.A. Kopylov, UFN 178(1), 109 (2008)CrossRefGoogle Scholar
  3. 3.
    H. Cao, A. Nahata, Opt. Express 13(18), 7028 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    A. Sommerfeld, Electrodynamics (Academic, New York, 1952)MATHGoogle Scholar
  5. 5.
    J.A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941)MATHGoogle Scholar
  6. 6.
    E. G. Elmore, Surface wave transmission system over a single conductor having e-fields terminating along the conductor, U.S. 7,567,154 B2, 2009Google Scholar
  7. 7.
    E. G. Elmore, Method and apparatus for launching a surface wave onto a single conductor transmission line using a slotted flared cone, U.S. 7,009,471 B2, 2006Google Scholar
  8. 8.
    A. Brodeur, C.Y. Chien, F.A. Ilkov, S.L. Chin, O.G. Kosareva, V.P. Kandidov, Opt. Lett. 22, 304 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    T.F. Francis, W. Liu, P.T. Simard, A. Becker, S.L. Chin, Phys. Rev. E 74, 036406 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, Z. Sheng, Phys. Rev. 66, 016406 (2002)ADSGoogle Scholar
  11. 11.
    S. Tzortzakis, S.M. Franco, Y.-B. Andre, A. Chiron, B. Lamouroux, B.S. Prade, A. Mysyrowicz, Phys. Rev. E 60, R3505 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Z.Q. Hao, J. Zhang, Z. Zhang, X. Yuan, Z. Zheng, X. Lu, Z. Jin, Z. Wang, J. Zhong, J. Zhong, Y. Liu, Phys. Rev. E 74, 066402 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    T. Anderson, Plasma antenna (Artech house, London, 2011)Google Scholar
  14. 14.
    R. Ackermann, G. Mejean, J. Kasparian, J. Yu, E. Salmon, J.P. Wolf, Opt. Lett. 31, 86–88 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    G. Mechain, G. Mejean, R. Ackermann, P. Rohwetter, Y.B. Andre, J. Kasparian, B. Prade, K. Stelmaszczyk, J. Yu, E. Salmon, W. Winn, L.A. Schlie, A. Mysyrowicz, R. Sauerbrey, L. Woste, J.-P. Wolf, Appl. Phys. B Lasers Opt. 80, 785–789 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    G. Mejean, J. Kasparian, J. Yu, E. Salmon, S. Frey, J.P. Wolf, S. Skupin, A. Vincotte, R. Nuter, S. Champeaux, L. Berge, Phys. Rev. E 72, 026611 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Mejean, J. Yu, J. Yu, J.P. Wolf, Appl. Phys. Lett. 83, 213–215 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    S. Skupin, L. Bergé, U. Peschel, F. Lederer, Phys. Rev. Lett. 93, 023901 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    M. Chateauneuf, S. Payeur, J. Dubois, J.-C. Kieffer, Appl. Phys. Lett. 92, 091104 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    H. Nowakowska, Z. Zakrzewski, M. Moisan, J. Phys. D Appl. Phys. 34, 1474 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    M.J. Keskinen, R. Fernsier, H.D. Ladouceur, A.P. Baronavski, P.W. Grounds, P.G. Girardi, Phys. Plasmas 8(12), 5077–5080 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    M. Alshershby, J.Q. Lin, Z.Q. Hao, J. Phys. D Appl. Phys. 43, 065102 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    G. Goubau, J. Appl. Phys. 21, 1119 (1950)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    S. Stephen, J. Appl. Phys. 22, 504–509 (1951)MATHCrossRefGoogle Scholar
  25. 25.
    L. Berge, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Rep. Prog. Phys. 70, 1633–1713 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    R.R. Musin, M.N. Shneider, A.M. Zheltikov, R.B. Miles, Appl. Opt. 46, 5593 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A.L. Peratt, Physics of the plasma universe (Springer, New York, 1991)Google Scholar
  28. 28.
    V. L. Ginzburg, Propagation of electromagnetic waves in plasma (Gordon and Breach, 1997)Google Scholar
  29. 29.
    V.V. Valuev, A.E. Dormidonov, V.P. Kandidov, S.A. Shlenov, V.N. Kornienko, V.A. Cherepenin, J. Comm, Technol. Electron. 55, 208 (2010)CrossRefGoogle Scholar
  30. 30.
    V.P. Kandidov, A.E. Dormidonov, O.G. Kosareva, N. Akozbek, M. Scalora, S.L. Chin, Appl. Phys. B Lasers Opt. 87, 29 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    A. E. Dormidonov, V. V. Valuev, V. L. Dmitriev, S. A. Shlenov, V. P. Kandidov, Proc. SPIE 6733, 67332S-1(2007)Google Scholar
  32. 32.
    F. Mitschke, Fiber optics physics and technology (Springer, Berlin, 2009)Google Scholar
  33. 33.
    S. Henin et al., Appl. Phys. B Lasers Opt. 100, 77 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    D. Hondros, Ann. Phys. 30, 905 (1909)MATHCrossRefGoogle Scholar
  35. 35.
    J.A. Stratton, Electromagnetic theory (IEEE Press, New York, 2007)Google Scholar
  36. 36.
    T.-I. Jeon, J. Zhang, D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Z.Q. Hao, J. Zhang, Y.T. Li, X. Lu, X.H. Yuan, Z.Y. Zheng, Z.H. Wang, W.J. Ling, Z.Y. Wei, Appl. Phys. B Laser Opt. 80, 627 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    B.L. Fontaine, F. Vidal, Z. Jiang, C.Y. Chien, D. Comtois, A. Desparois, T.W. Johnston, J.-C. Kieffer, H. Pépin, H.P. Mercure, Phys. Plasmas 6, 1615 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    G. Goubau, IRE transaction on microwave theory and techniques 4, 197–200 (1956)ADSCrossRefGoogle Scholar
  40. 40.
    D.M. Pozar, Microwave engineering, 3rd edn. (Wiley, New York, 2004)Google Scholar
  41. 41.
    D. C. Friedman, Technical report ARWSE-TR-09004, U.S. Army Armament Research (2009)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mostafa Alshershby
    • 1
  • Jingquan Lin
    • 1
  • Zuoqiang Hao
    • 1
  1. 1.School of ScienceChangchun University of Science and TechnologyChangchunChina

Personalised recommendations