Applied Physics B

, Volume 109, Issue 2, pp 351–357 | Cite as

High-energy Ho:LLF MOPA laser system using a top-hat pump profile for the amplifier stage



Numerical simulations show the advantage of using a top-hat intensity profile pumping the amplifier stage in an Ho:LuLiF4 (Ho:LLF) master oscillator power amplifier (MOPA) configuration over a Gaussian pump profile: higher pulse energies could be generated simultaneously with reduced peak fluence in Q-switched operation. In the experimental implementation, the top-hat beam was realized with a coherent beam transformation of the non-absorbed pump beam transmitted by the oscillator to pump the amplifier stage. The Ho:LLF MOPA produced 103.6 mJ at a repetition rate of 100 Hz with a pulse duration of 30 ns at a wavelength of 2053 nm, which corresponds to an optical-to-optical efficiency of 12.9 %. The beam quality was nearly diffraction limited (M 2 = 1.03).


  1. 1.
    T.Y. Fan, G. Huber, R.L. Byer, P. Mitzscherlich, IEEE J. Quant. Electron. 24, 924 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    P.A. Budni, L.A. Pomeranz, M.L. Lemons, C.A. Miller, J.R. Mosto, E.P. Chicklis, J. Opt. Soc. Am. B 17, 723 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    P.A. Budni, C.R. Ibach, S.D. Setzler, E.J. Gustafson, R.T. Castro, E.P. Chicklis, Opt. Lett. 28, 1016 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    E. Lippert, G. Arisholm, G. Rustad, K. Stenersen, in Advanced Solid-State Photonics, ed. by J.J. Zayhowski. OSA Trends in Optics and Photonics Series, vol 83 (Optical Society of America, Washington, DC, 2003), p. 292Google Scholar
  5. 5.
    D.Y. Shen, A. Abdolvand, L.J. Cooper, W.A. Clarkson, Appl. Phys. B 79, 559 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, G. Rustad, Appl. Opt. 45, 3839 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    K. Schmidt, C. Reiter, H. Voss, F. Massmann, M. Ostermeyer, Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011, art. no. 5942460Google Scholar
  8. 8.
    S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, P. Fuhrberg, Opt. Lett. 37, 515 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    A.A. Kaminskii, Laser Crystals (Springer, Berlin, 1981)Google Scholar
  10. 10.
    B.M. Walsh, N.P. Barnes, B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    M. Eichhorn, Appl. Phys. B 93, 269 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    A. Dergachev, P.F. Moulton, in Advanced Solid-State Photonics, ed. by J.J. Zayhowski. OSA Trends in Optics and Photonics Series, vol 83 (Optical Society of America, Washington, DC, 2003), p. 137Google Scholar
  13. 13.
    Y. Bai, J. Yu, M. Petros, P.J. Petzar, B.C. Trieu, H.R. Lee, U. Singh: Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CTuN5Google Scholar
  14. 14.
    A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, Opt. Express 15, 14404 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Bai, J. Yu, P. Petzar, M. Petros, S. Chen, B. Trieu, H. Lee, U. Singh: Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CWH5Google Scholar
  16. 16.
    L.R. Botha, C. Bollig, M.J.D. Esser, R.N. Campbell, C. Jacobs, D.R. Preussler, Opt. Express 17, 20615 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    H.J. Strauss, W. Koen, C. Bollig, M.J.D. Esser, C. Jacobs, O.J.P. Collett, D.R. Preussler, Opt. Express 19, 13974 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    B.M. Walsh, G.W. Grew, N.P. Barnes, J. Phys. Condens. Matter 17, 7643 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    B. Walsh, N.P. Barnes, J. Yu, M. Petros, in Advanced Solid-State Lasers, ed. by M. Fermann, L. Marshall. Trends in Optics and Photonics Series, vol 68 (Optical Society of America, 2002), paper TuB8Google Scholar
  20. 20.
    M. Schellhorn, Appl. Phys. B 103, 777 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    J.W. Kim, J.I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, W.A. Clarkson, Opt. Lett. 35, 420 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, M.J.D. Esser, Appl. Phys. B 99, 101 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    M. Schellhorn, Lasers, Sources, and Related Photonic Devices Technical Digest, Advanced Solid-State Photonics (ASSP) (Optical Society of America, Washington, DC, 2012), paper AW4A.04Google Scholar
  24. 24.
    M. Schellhorn, Opt. Lett. 35, 2609 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Eichhorn, G. Stöppler, M. Schellhorn, K.T. Zawilski, P.G. Schunemann, Appl. Phys. B 108, 109 (2012)Google Scholar
  26. 26.
    B.M. Walsh, N.P. Barnes, M. Petros, J. Yu, U.N. Singh, J. Appl. Phys. 95, 3255 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    A.E. Siegman, M.W. Sasnett, J.F. Johnston Jr, IEEE J. Quant. Electron. 27, 1098 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    R.L. Aggarwal, D.J. Ripin, J.R. Ochoa, T.Y. Fan, J. Appl. Phys. 98, 103514 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.French–German Research Institute of Saint Louis ISLSaint-LouisFrance

Personalised recommendations