Applied Physics B

, Volume 109, Issue 2, pp 333–343 | Cite as

A DFG-based cavity ring-down spectrometer for trace gas sensing in the mid-infrared

  • K. E. Whittaker
  • L. Ciaffoni
  • G. Hancock
  • R. Peverall
  • G. A. D. RitchieEmail author


Continuing studies into an all-diode laser-based 3.3 μm difference frequency generation cavity ring-down spectroscopy system are presented. Light from a 1,560 nm diode laser, amplified by an erbium-doped fibre amplifier, was mixed with 1,064 nm diode laser radiation in a bulk periodically poled lithium niobate crystal to generate 16 μW of mid-IR light at 3,346 nm with a conversion efficiency of \(0.05\,\%\,{\text{W}}^{-1}\,{\text{cm}}^{-1}\). This radiation was coupled into a 77 cm long linear cavity with average mirror reflectivities of 0.9996, and a measured baseline ring-down time of \(6.07\pm 0.03\,\upmu{\rm s}\). The potential of such a spectrometer was illustrated by investigating the \(P(3)\) transition in the fundamental \(\nu_{3}(F_{2})\) band of \({\text{CH}}_4\) both in a 7.5 ppmv calibrated mixture of \({\text{CH}}_4\) in air and in breath samples from methane and non-methane producers under conditions where the minimum detectable absorption coefficient (\(\alpha_{\rm min}\)) was \(2.8 \times 10^{-8}\,{\rm cm}^{-1}\) over 6 s using a ring-down time acquisition rate of 20 Hz. Allan variance measurements indicated an optimum \(\alpha_{\rm min}\) of \(2.9\times 10^{-9}\,{\rm cm}^{-1}\) over 44 s.


Cavity Mode Periodically Pole Lithium Niobate Difference Frequency Generation Quasi Phase Match Periodically Pole Lithium Niobate Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the EPSRC for providing a Doctoral Training Award for this project (KEW) and financial support through the grant EP/E019765/1.


  1. 1.
    M.W. Sigrist (ed.), Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994)Google Scholar
  2. 2.
    A. Fried, D. Richter, in Analytical Techniques for Atmospheric Measurement, ed. by D.E. Heard (Blackwell Sci, Oxford, 2006), p. 72Google Scholar
  3. 3.
    C. Wang, P. Sahay, Sensors 9, 8230 (2009)CrossRefGoogle Scholar
  4. 4.
    F.K. Tittel, D. Richter, A. Fried, in Topics in Applied Physics, Vol. 89, ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, 2003), p. 445Google Scholar
  5. 5.
    A. Godard, C. R. Physique 8, 1100 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. Sigrist, F. Tittel, C. R. Physique 8, 1129 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    S. Welzel, F. Hempel, M. Hübner, N. Lang, P.B. Davies, J. Röpcke, Sensors 10, 6861 (2010)CrossRefGoogle Scholar
  10. 10.
    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Daylight Solutions Inc., San Diego, USA,
  12. 12.
    I. Vurgaftman, W.W. Bewley, C.L. Canedy, C.S. Kim, M. Kim, J.R. Lindle, C.D. Merritt, J. Abell, J.R. Meyer, IEEE J. Sel. Top. Quant. 17, 1435 (2011)CrossRefGoogle Scholar
  13. 13.
    L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, L. Worschech, Electron. Lett. 47, 46 (2011)CrossRefGoogle Scholar
  14. 14.
    R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003)Google Scholar
  15. 15.
    L. Ciaffoni, G. Hancock, P.L. Hurst, M. Kingston, C.E. Langley, R. Peverall, G.A.D. Ritchie, K.E. Whittaker, Appl. Phys. B. (2012) doi: 10.1007/s00340-011-4869-5
  16. 16.
    M. Lewander, A. Fried, P. Weibring, D. Richter, S. Spuler, L. Rippe, Appl. Phys. B 104, 715 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Silver, Appl. Opt. 31, 707 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    G.E. Hall, S.W. North, Annu. Rev. Phys. Chem. 51, 243 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    S.S. Brown, Chem. Rev. 103, 5219 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Annu. Rep. Prog. Chem., Sect. C 101, 100 (2005).Google Scholar
  21. 21.
    A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    D. Richter, D.G. Lancaster, R.F. Curl, W. Neu, F.K. Tittel, Appl. Phys. B 67, 347 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    D. Richter, M. Erdelyi, R.F. Curl, F.K. Tittel, C. Oppenheimer, H.J. Duffell, M. Burton, Opt. Laser. Eng. 37, 171 (2002)CrossRefGoogle Scholar
  24. 24.
    H.Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, G.A.D. Ritchie, Chem. Phys. Lett. 399, 102 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, G.A.D. Ritchie, Appl. Phys. B 86, 437 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    R. Grilli, L. Ciaffoni, G. Hancock, R. Peverall, G.A.D. Ritchie, A.J. Orr-Ewing, Appl. Opt. 48, 5696 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    L. Ciaffoni, R. Grilli, G. Hancock, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Appl. Phys. B 94, 517 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    P. Weibring, D. Richter, J.G. Walega, A. Fried, Opt. Express 15, 13476 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    D. Marinov, J. Rey, M.W. Sigrist, Appl. Opt. 47, 1956 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    S. Stry, P. Hering, M. Mürtz, Appl. Phys. B 75, 297 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    D. Halmer, S. Thelen, P. Hering, M. Mürtz, Appl. Phys. B 85, 437 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    I. Galli, P. Cancio., G. Di Lonardo, L. Fusina, D. Mazzotti, F. Tamassia, P. De Natale, Mol. Phys. 109, 2267 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Gagliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, P. De Natale, Appl. Phys. B 102, 255 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    K. Dryahina, D. Smith, P. Spanel, Rapid Commun. Mass Sp. 24, 1296 (2010)CrossRefGoogle Scholar
  35. 35.
    L. Le Marchand, L.R. Wilkens, P. Harwood, R.V. Cooney, Environ. Health Persp. 98, 199 (1992)CrossRefGoogle Scholar
  36. 36.
    M. Pimentel, A.G. Mayer, S. Park, E.J. Chow, A. Hasan, Y. Kong, Digest. Dis. Sci. 48, 86 (2003)CrossRefGoogle Scholar
  37. 37.
    K.L. Moskalenko, A.I. Nadezhdinskii, I.A. Adamovskaya, Infrared Phys. Techn. 37, 181 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    P. Bergamaschi, M. Schupp, G.W. Harris, Appl. Opt. 33, 7704 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    C. Fischer, M.W. Sigrist, in Topics in Applied Physics, vol. 89, ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, 2003), p. 97Google Scholar
  40. 40.
    P.E. Powers, Fundamentals of Nonlinear Optics (Taylor and Francis, London, 2011)zbMATHGoogle Scholar
  41. 41.
    D. Hum, M. Fejer, C. R. Physique 8, 180 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, F. Tamassia, Appl. Phys. B 76, 473 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    D.H. Jundt, Opt. Lett. 22, 1553 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    D. Richter, P. Weibring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, H. Suzuki, Opt. Express 15, 564 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    L.G. Deng, K. He, T. Zhou, C. Li, J. Opt. A: Pure Appl. Opt. 7, 409 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    A. O’Keefe, Chem. Phys. Lett. 293, 331 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    G. Berden, R. Engeln (eds.), Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley, Chichester, 2009)Google Scholar
  48. 48.
    J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B 80, 1027 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998)ADSCrossRefGoogle Scholar
  50. 50.
    J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Ueunten, D.S. Urevig, D.J. Spencer, D.J. Benard, Appl. Opt. 19, 144 (1980)ADSCrossRefGoogle Scholar
  51. 51.
    G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, P. De Natale, Phys. Rev. Lett. 104, 110801 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    P. Maddaloni, G. Gagliardi, P. Malara, P. De Natale, Appl. Phys. B 80, 141 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    D.R. Skinner, R.E. Whitcher, J. Phys. E: Sci. Instrum. 5, 237 (1972)ADSCrossRefGoogle Scholar
  54. 54.
    D. Halmer, G. von Basum, P. Hering, M. Mürtz, Rev. Sci. Instrum. 75, 2187 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    M.A. Everest, D.B. Atkinson, Rev. Sci. Instrum. 79, 023108 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge University Press, Cambridge, 2004)Google Scholar
  57. 57.
    H. Feng, E. Patzak, J. Sanitar, Photonic Netw. Commun. 4, 151 (2002)CrossRefGoogle Scholar
  58. 58.
    L.G. Kazovsky, S.-W. Wong, V. Gudla, P.T. Afshar, S.-H. Yen, S. Yamashita, Y. Yan, IET Optoelectron. 5, 133 (2011)CrossRefGoogle Scholar
  59. 59.
    P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)ADSCrossRefGoogle Scholar
  60. 60.
    L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr, K. Chancea, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    C.E. Langley, DPhil thesis, University of Oxford (2012)Google Scholar
  62. 62.
    I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Opt. Lett. 35, 3616 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Opt. Express 17, 9582 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Phys. Rev. Lett. 107, 270802 (2011)CrossRefGoogle Scholar
  65. 65.
    T.B. Chu, M. Broyer, J. Physique 46, 523 (1985)Google Scholar
  66. 66.
    R. Grilli, L. Ciaffoni, A.J. Orr-Ewing, Opt. Lett. 35, 1383 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    L. Ciaffoni, R. Peverall, G.A.D. Ritchie, J. Breath Res. 5, 024002 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    G. Maisons, P. Gorrotxategi Carbajo, M. Carras, D. Romanini, Opt. Lett. 35, 3607 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    D.J. Hamilton, A.J. Orr-Ewing, Appl. Phys. B 102, 879 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    G. Wysocki, Y. Bakhirkin, S. So, F.K. Tittel, C.J. Hill, R.Q. Yang, M.P. Fraser, Appl. Opt. 46, 8202 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    A.G. Carlton, C. Wiedinmyer, J.H. Kroll, Atmos. Chem. Phys. 9, 4987 (2009)CrossRefGoogle Scholar
  72. 72.
    K.E. Whittaker, L. Ciaffoni, G. Hancock, M. Islam, R. Peverall, G.A.D. Ritchie, Appl. Phys. B (2012) doi: 10.1007/s00340-012-5071-0

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • K. E. Whittaker
    • 1
  • L. Ciaffoni
    • 1
  • G. Hancock
    • 1
  • R. Peverall
    • 1
  • G. A. D. Ritchie
    • 1
    Email author
  1. 1.Department of Chemistry, Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations