Advertisement

Applied Physics B

, Volume 108, Issue 1, pp 129–135 | Cite as

Doping-induced changes in the saturable absorption of monolayer graphene

  • C.-C. Lee
  • J. M. Miller
  • T. R. Schibli
Article

Abstract

Graphene is a broadband, fast saturable absorber well suited for passive mode-locking of lasers. The broadband absorption, ultra-short recovery time, and low cost of graphene absorbers compare favorably with traditional semiconductor saturable absorber mirrors (SESAMs). However, it remains difficult to tailor the parameters of a monolayer graphene absorber such as the modulation depth and the insertion loss; this limits the absorber’s design freedom, which is often required for mode-locking without Q-switching instability. We demonstrate in this work that, by hole-doping graphene chemically to various Fermi levels, the modulation depth and insertion loss are modified. Further control of graphene’s saturable absorption by electric-field gating and its application to active suppression of Q-switching in lasers is discussed.

Keywords

Saturable Absorption Insertion Loss Modulation Depth Saturable Absorber Copper Foil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We deeply appreciate the support from Dr. Kaoru Minoshima, AIST/NMIJ Tsukuba, Japan, who provided us the Er:Yb:glass. We would also like to express our gratitude toward Prof. Markus Raschke for lending us the use of the micro-Raman system and toward Joanna Atkin and Samuel Berweger for lending us their expertise in Raman spectroscopy. This research was supported in part by the NNIN at the Colorado Nanofabrication Laboratory and the National Science Foundation under Grant No. ECS-0335765 and by the Innovative Seed Grant Program at the University of Colorado.

References

  1. 1.
    T. Stauber, N.M.R. Peres, A.K. Geim, Phys. Rev. B 78, 085432 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Phys. Rev. Lett. 101, 196405 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Shi, X. Dong, P. Chen, J. Wang, L.-J. Li, Phys. Rev. B 79, 115402 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y. Ron Shen, Science 320, 206 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    F.T. Vasko, Phys. Rev. B 82, 245422 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    G. Xing, H. Guo, X. Zhang, T.C. Sum, C.H.A. Huan, Opt. Express 18, 4564 (2010) CrossRefGoogle Scholar
  7. 7.
    Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, ACS Nano 4, 803 (2010) CrossRefGoogle Scholar
  8. 8.
    Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, K. Loh, Nano Res. 4, 297 (2011). doi: 10.1007/s12274-010-0082-9 CrossRefGoogle Scholar
  9. 9.
    Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, Adv. Funct. Mater. 19, 3077 (2009) CrossRefGoogle Scholar
  10. 10.
    Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D.Y. Tang, R. Jose, S. Ramakrishna, C.T. Lim, K.P. Loh, Adv. Funct. Mater. 20, 782 (2010) CrossRefGoogle Scholar
  11. 11.
    W.D. Tan, C.Y. Su, R.J. Knize, G.Q. Xie, L.J. Li, D.Y. Tang, Appl. Phys. Lett. 96, 031106 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    H. Zhang, Q. Bao, D. Tang, L. Zhao, K. Loh, Appl. Phys. Lett. 95, 141103 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    H. Zhang, D. Tang, R.J. Knize, L. Zhao, Q. Bao, K.P. Loh, Appl. Phys. Lett. 96, 111112 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    H. Zhang, D.Y. Tang, L.M. Zhao, Q.L. Bao, K.P. Loh, Opt. Express 17, 17630 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    W.B. Cho, H.W. Lee, S.Y. Choi, J.W. Kim, D.-I. Yeom, F. Rotermund, J. Kim, B.H. Hong, in Conference on Lasers and Electro-Optics, p. JThE86 (Optical Society of America, Washington, 2010) Google Scholar
  16. 16.
    C.-C. Lee, T.R. Schibli, G. Acosta, J.S. Bunch, J. Nonlinear Opt. Phys. Mater. 19, 767 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    X. Li, C.W. Magnuson, A. Venugopal, J. An, J.W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E.M. Vogel, E. Voelkl, L. Colombo, R.S. Ruoff, Nano Lett. 10, 4328 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing, J.H. Smet, Nano Lett. 10, 1149 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    P. Joshi, H.E. Romero, A.T. Neal, V.K. Toutam, S.A. Tadigadapa, J. Phys. Condens. Matter 22, 334214 (2010) CrossRefGoogle Scholar
  21. 21.
    A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski, A.A. Bol, ACS Nano 4, 3839 (2010) CrossRefGoogle Scholar
  22. 22.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    B. Krauss, T. Lohmann, D.-H. Chae, M. Haluska, K. von Klitzing, J.H. Smet, Phys. Rev. B 79, 165428 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nat. Nanotechnol. 3, 210 (2008) CrossRefGoogle Scholar
  26. 26.
    J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, L.-J. Li, Small 5, 1422 (2009) CrossRefGoogle Scholar
  28. 28.
    M. Haiml, R. Grange, U. Keller, Appl. Phys. B, Lasers Opt. 79, 331 (2004). doi: 10.1007/s00340-004-1535-1 CrossRefGoogle Scholar
  29. 29.
    J.M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M.G. Spencer, Appl. Phys. Lett. 92, 042116 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    H. Wang, J.H. Strait, P.A. George, S. Shivaraman, V.B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M.G. Spencer, C.S. Ruiz-Vargas, J. Park, Appl. Phys. Lett. 96, 081917 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J.P. Rabe, C. Ropers, A. Knorr, T. Elsaesser, Phys. Rev. B 83, 153410 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    G.P. Agrawal, N.A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989) ADSCrossRefGoogle Scholar
  33. 33.
    T.R. Schibli, E.R. Thoen, F.X. Kartner, E.P. Ippen, Appl. Phys. B, Lasers Opt. 70, S41 (2000). doi: 10.1007/s003400000331 ADSCrossRefGoogle Scholar
  34. 34.
    M. Regmi, M.F. Chisholm, G. Eres, Carbon 50, 134 (2012) CrossRefGoogle Scholar
  35. 35.
    F.X. Kaertner, L.R. Brovelli, D. Kopf, M. Kamp, I.G. Calasso, U. Keller, J. Phys. 34, 2024 (1995) Google Scholar
  36. 36.
    T.R. Schibli, U. Morgner, F.X. Kärtner, Opt. Lett. 26, 148 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    N. Joly, S. Bielawski, Opt. Lett. 26, 692 (2001) ADSCrossRefGoogle Scholar
  38. 38.
    U. Keller, K.J. Weingarten, F.X. Kartner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations