Applied Physics B

, Volume 107, Issue 4, pp 945–954 | Cite as

Heating rates in a thin ion trap for microcavity experiments

Article

Abstract

We have built and characterized a novel linear ion trap. Its small horizontal electrode separation of 250 μm would previously have required microfabrication methods, while our trap was machined conventionally. The thin trap is designed to accommodate a transverse optical cavity of 0.5 mm length, a requirement for cavity-QED experiments with trapped ions in the strong coupling regime. The sandwich structure of the electrodes allows for a very accurate alignment. Employing the Doppler-recooling method, we found that intermittent laser-induced radiation pressure has a significant effect on the ion’s spectrum. This must be taken into account to correctly determine the heating rate of the trap. To this end, we have derived an analytic expression for the spectral line shape of the ion, which includes the effect of natural line broadening, heating as well as radiation pressure. We apply it to determine the accurate heating rate of the system.

Notes

Acknowledgement

We gratefully acknowledge support from the European Commission (Marie Curie Excellence Grant MEXT-CT-2005-025703, SCALA network Contract 015714) and the EPSRC (EP/D061296/1).

References

  1. 1.
    F. Diedrich, H. Walther, Phys. Rev. Lett. 58, 203 (1987) ADSCrossRefGoogle Scholar
  2. 2.
    T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    T. Schneider, E. Peik, C. Tamm, Phys. Rev. Lett. 94, 230801 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G.P.T. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Nature 422, 408 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, D.J. Wineland, Nature 422, 412 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    T. Monz, P. Schindler, J. Barreiro, M. Chwalla, D. Nigg, W. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    G.R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, H. Walther, Nature 414, 49 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Nature 431, 1075 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    H.G. Barros, A. Stute, T.E. Northup, C. Russo, P.O. Schmidt, R. Blatt, New J. Phys. 11, 103004 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nat. Phys. 2, 36 (2006) CrossRefGoogle Scholar
  12. 12.
    J. Chiaverini, R.B. Blakestad, J. Britton, J.D. Jost, C. Langer, D. Leibfried, R. Ozeri, D.J. Wineland, Quantum Inf. Comput. 5, 419 (2005) MathSciNetMATHGoogle Scholar
  13. 13.
    J. Britton, D. Leibfried, J.A. Beall, R.B. Blakestad, J.H. Wesenberg, D.J. Wineland, Appl. Phys. Lett. 95, 173102 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Appl. Phys. B 76, 125 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    M.A. Rowe, A. Ben-Kish, B. Demarco, D. Leibfried, V. Meyer, J. Beall, J. Britton, J. Hughes, W.M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, D.J. Wineland, Quantum Inf. Comput. 2, 257 (2002) MATHGoogle Scholar
  16. 16.
    D.M. Lucas, A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J.P. Stacey, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. A 69, 012711 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    N. Seymour-Smith, P. Blythe, M. Keller, W. Lange, Rev. Sci. Instrum. 81, 075109 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    M. Harlander, M. Brownnutt, W. Hänsel, R. Blatt, New J. Phys. 12, 093035 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger, J. Sterk, C. Monroe, Phys. Rev. Lett. 97, 103007 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    U.G. Poschinger, G. Huber, F. Ziesel, M. Deiss, M. Hettrich, S.A. Schulz, K. Singer, G. Poulsen, M. Drewsen, R.J. Hendricks, F. Schmidt-Kaler, J. Phys. B, At. Mol. Opt. Phys. 42, 154013 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. A 76, 033411 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    J.H. Wesenberg, R.J. Epstein, D. Leibfried, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Phys. Rev. A 76, 053416 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    J.M. Amini, J. Britton, D. Leibfried, D.J. Wineland, in Atom Chips, ed. by J. Reichel, V. Vuletic (Wiley-VCH, Weinheim, 2011), Chap. 13, pp. 395–416 CrossRefGoogle Scholar
  26. 26.
    N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, S. Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13, 013032 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    J.A.C. Weideman, SIAM J. Numer. Anal. 31, 1497 (1994) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of SussexBrightonUK

Personalised recommendations