Advertisement

Applied Physics B

, Volume 109, Issue 3, pp 423–432 | Cite as

Combining a DS-DBR laser with QPM-DFG for mid-infrared spectroscopy

  • K. E. Whittaker
  • L. Ciaffoni
  • G. Hancock
  • M. Islam
  • R. Peverall
  • G. A. D. RitchieEmail author
Article

Abstract

Studies into the suitability of a novel, widely tunable telecom L-band (1563–1613 nm) digital supermode distributed Bragg reflector (DS-DBR) laser for spectroscopy in the mid-IR are presented. Light from the DS-DBR laser was mixed with 1064 nm radiation in a periodically poled lithium niobate (PPLN) crystal to generate mid-IR light by quasi phase matching difference frequency generation (QPM-DFG). The resultant continuous wave radiation covered the range 3000–3200 cm−1 with powers of up to 2.6 μW. The use of such laser light for spectroscopic applications was illustrated by performing absorption experiments on both narrow-band and broad-band absorbers, namely methane (CH4) and methanethiol (CH3SH). Wavelength modulation spectroscopy (WMS) on CH4 demonstrated that the modulation characteristics of the DS-DBR laser observed in the near-IR were transposed to the mid-IR and yielded a sensitivity of 3.1×10−6 cm−1 Hz−1/2 over a 47 cm path length. In the CH3SH spectrum, the absorption feature at 3040 cm−1 was identified as a potential useful region for monitoring this biomarker in exhaled breath at reduced pressures.

Keywords

Full Width Half Maximum Periodically Pole Lithium Niobate Difference Frequency Generation Quasi Phase Match Wavelength Modulation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Andrew Orr-Ewing from the University of Bristol for the use of the L-band EDFA required to perform these measurements and to Bookham Technology for the DS-DBR laser. The authors are also grateful to the EPSRC for providing a Doctoral Training Award for this project (KEW), an advanced research fellowship (RP) and financial support through the grant EP/E019765/1.

References

  1. 1.
    A. Fried, D. Richter, in Analytical Techniques for Atmospheric Measurement, ed. by D.E. Heard (Blackwell Sci, Oxford, 2006), pp. 72–146 CrossRefGoogle Scholar
  2. 2.
    F.K. Tittel, D. Richter, A. Fried, in Topics in Applied Physics, ed. by I.T. Sorokina, K.L. Vodopyanov. Solid-State Mid-Infrared Laser Sources, vol. 89 (Springer, Berlin, 2003), pp. 445–510 Google Scholar
  3. 3.
    W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. Sigrist, F. Tittel, C. R. Phys. 8, 1129 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    L.E. Christensen, C.R. Webster, R.Q. Yang, Appl. Opt. 46, 1132 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    R.Q. Yang, C.J. Hill, K. Mansour, Y. Qiu, A. Soibel, R.E. Muller, P.M. Echternach, IEEE J. Quantum Electron. 13, 1074 (2007) CrossRefGoogle Scholar
  6. 6.
    I. Vurgaftman, W.W. Bewley, C.L. Canedy, C.S. Kim, M. Kim, J.R. Lindle, C.D. Merritt, J. Abell, J.R. Meyer, IEEE J. Sel. Top. Quantum Electron. 17, 1435 (2011) CrossRefGoogle Scholar
  7. 7.
    L. Naehle, S. Belahsene, M. von Edlinger, M. Fischer, G. Boissier, P. Grech, G. Narcy, A. Vicet, Y. Rouillard, J. Koeth, L. Worschech, Electron. Lett. 47, 46 (2011) CrossRefGoogle Scholar
  8. 8.
    R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003) Google Scholar
  9. 9.
    Lockheed Martin Aculight, Bothell, USA (2012), http://www.lockheedmartin.com/us/products/aculight.html
  10. 10.
    R. Grilli, L. Ciaffoni, G. Hancock, R. Peverall, G.A.D. Ritchie, A.J. Orr-Ewing, Appl. Opt. 48, 5696 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    D. Richter, D.G. Lancaster, R.F. Curl, W. Neu, F.K. Tittel, Appl. Phys. B 67, 347 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    L. Ciaffoni, R. Grilli, G. Hancock, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Appl. Phys. B 94, 517 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    V. Weldon, D. McInerney, R. Phelan, M. Lynch, J. Donegan, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 63, 1013 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    T.L. Koch, U. Koren, J. Lightwave Technol. 8, 274 (1990) ADSCrossRefGoogle Scholar
  15. 15.
    A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, M.J. Wale, IEEE J. Quantum Electron. 11, 149 (2005) CrossRefGoogle Scholar
  16. 16.
    L. Ponnampalam, D.J. Robbins, A.J. Ward, N.D. Whitbread, J.P. Duck, G. Busico, D.J. Bazley, IEEE J. Quantum Electron. 43, 798 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    M. Lewander, A. Fried, P. Weibring, D. Richter, S. Spuler, L. Rippe, Appl. Phys. B 104, 715 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    L. Ciaffoni, G. Hancock, P.L. Hurst, M. Kingston, C.E. Langley, R. Peverall, G.A.D. Ritchie, K.E. Whittaker, Appl. Phys. B (2012). doi: 10.1007/s00340-011-4869-5 Google Scholar
  19. 19.
    S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, F. Tamassia, Appl. Phys. B 76, 473 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    P. Maddaloni, G. Gagliardi, P. Malara, P. De Natale, Appl. Phys. B 80, 141 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    H.Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, G.A.D. Ritchie, Chem. Phys. Lett. 399, 102 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    D.H. Jundt, Opt. Lett. 22, 1553 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    M. Gianella, M.W. Sigrist, Sensors 10, 2694 (2010) CrossRefGoogle Scholar
  24. 24.
    L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chancea, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    L.R. Brown, D. Chris Benner, J.P. Champion, V.M. Devi, L. Fejard, R.R. Gamache, T. Gabard, J.C. Hilico, B. Lavorel, M. Loete, G.Ch. Mellau, A. Nikitin, A.S. Pine, A. Predoi-Cross, C.P. Rinsland, O. Robert, R.L. Sams, M.A.H. Smith, S.A. Tashkun, Vl.G. Tyuterev, J. Quant. Spectrosc. Radiat. Transf. 82, 219 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    J.A. Silver, Appl. Opt. 31, 707 (1992) ADSCrossRefGoogle Scholar
  27. 27.
    W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, G.A.D. Ritchie, Appl. Phys. B 86, 437 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    B. Buszewski, M. Kesy, T. Ligor, A. Amann, Biomed. Chromatogr. 21, 553 (2007) CrossRefGoogle Scholar
  29. 29.
    L. Ciaffoni, R. Peverall, G.A.D. Ritchie, J. Breath Res. 5, 024002 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    Pacific Northwest National Laboratory, Vapor Phase Infrared Spectral Library (2012), http://nwir.pnl.gov
  31. 31.
    D. Halmer, S. Thelen, P. Hering, M. Mürtz, Appl. Phys. B 85, 437 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • K. E. Whittaker
    • 1
  • L. Ciaffoni
    • 1
  • G. Hancock
    • 1
  • M. Islam
    • 2
  • R. Peverall
    • 1
  • G. A. D. Ritchie
    • 1
    Email author
  1. 1.Department of Chemistry, Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK
  2. 2.School of Science and EngineeringTeesside UniversityMiddlesbroughUK

Personalised recommendations