Over 200 W average power tunable Raman amplifier based on fused silica step index fiber
- 295 Downloads
- 9 Citations
Abstract
A high-power tunable Raman Amplifier is presented. The seed signal (varying from 1118 nm to 1130 nm in wavelength) was generated in a tunable Raman oscillator and fed into the Raman amplification stage. A conversion efficiency of up to 86 % was achieved and a maximum output power of over 200 W was measured. The Raman gain coefficient for the amplifier fiber was measured to be 0.76×10−14 m/W. Furthermore, the measured output power was compared with values obtained from simple mathematical model and a good agreement up to the highest output power of amplified signal was achieved.
Keywords
Output Power Stimulate Raman Scattering Raman Gain Splice Loss Raman PumpNotes
Acknowledgements
The authors would like to thank European Commission for financial support of this work within project “LIFT” under grant agreement no. NMP2-LA-2009-228587.
References
- 1.A. Tuennermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, J. Limpert, J. Phys. B, At. Mol. Opt. Phys. 38, S681 (2005) ADSCrossRefGoogle Scholar
- 2.J. Limpert, F. Roeser, S. Klingebiel, T. Schreiber, Ch. Wirth, T. Peschel, R. Eberhardt, A. Tuennermann, IEEE J. Sel. Topics Quantum Electron. 13, 537 (2007) CrossRefGoogle Scholar
- 3.D.J. Richardson, J. Nilsson, W.A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010) CrossRefGoogle Scholar
- 4.M.L. Osowski, W. Hu, R.M. Lammert, S.W. Oh, P.T. Rudy, T. Stakelon, L. Vaissie, J.E. Ungar, Proc. SPIE 6952, 695208 (2008) CrossRefGoogle Scholar
- 5.E. Snitzer, H. Po, R. Tumminelli, F. Hakimi, U.S. Patent 4,815,079, 1989 Google Scholar
- 6.L. Zenteno, J. Lightwave Technol. 11, 1435 (1993) ADSCrossRefGoogle Scholar
- 7.M. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. Walton, L. Zenteno, J. Lightwave Technol. 27, 3010 (2009) ADSCrossRefGoogle Scholar
- 8.C.B. Olausson, A. Shirakawa, M. Chen, J.K. Lyngsø, J. Broeng, K.P. Hansen, A. Bjarklev, K. Ueda, Opt. Express 18, 16345 (2010) ADSCrossRefGoogle Scholar
- 9.M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, J. Maran, Proc. SPIE 7195, 71951U (2009) CrossRefGoogle Scholar
- 10.R.H. Stolen, E.P. Ippen, Appl. Phys. Lett. 22, 276 (1973) ADSCrossRefGoogle Scholar
- 11.V.E. Perlin, H.G. Winful, J. Lightwave Technol. 20, 250 (2002) ADSCrossRefGoogle Scholar
- 12.D. Georgiev, V.P. Gapontsev, A.G. Dronov, M.Y. Vyatkin, A.B. Rulkov, S.V. Popov, J.R. Taylor, Opt. Express 13, 6772 (2005) ADSCrossRefGoogle Scholar
- 13.Y. Feng, L.R. Taylor, D.B. Calia, Opt. Express 17, 23678 (2009) ADSCrossRefGoogle Scholar
- 14.Y. Feng, L.R. Taylor, D.B. Calia, R. Holzloener, W. Hackenberg, in Frontiers in Optics (FiO) Postdeadline Papers I (PDPA) (2009) Google Scholar
- 15.G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007) Google Scholar
- 16.M.N. Islam (ed.), Raman Amplifiers for Telecommunications 1, Physical Principles (Springer, Berlin, 2004) Google Scholar
- 17.R.G. Smith, Appl. Opt. 11, 2489 (1972) ADSCrossRefGoogle Scholar
- 18.R.H. Stolen, in Technical Digest Symposium on Optical Fiber Measurements 2000 (NIST Special Publications 953, September 2000) Google Scholar
- 19.Y. Kang, Calculations and measurements of Raman gain coefficients of different fiber types. Master Thesis, The Faculty of the Virginia Polytechnic Institute and State University Blacksburg, Virginia, 2002 Google Scholar
- 20.V. Ramaswamy, R. Standley, D. Sze, W.G. French, Bell Syst. Tech. J. 57, 635 (1978) Google Scholar
- 21.K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, Electron. Lett. 16, 768 (1980) CrossRefGoogle Scholar
- 22.G.D. VanWiggeren, Rajarshi Roy, Appl. Opt. 38, 3888 (1999) ADSCrossRefGoogle Scholar
- 23.M.N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002) CrossRefGoogle Scholar
- 24.R.H. Stolen, IEEE J. Quantum Electron. 15, 1157 (1979) ADSCrossRefGoogle Scholar
- 25.S. Popov, S. Sergeyev, A.T. Friberg, J. Opt. A, Pure Appl. Opt. 6, S72 (2004) ADSCrossRefGoogle Scholar