Advertisement

Applied Physics B

, Volume 107, Issue 3, pp 711–716 | Cite as

Over 200 W average power tunable Raman amplifier based on fused silica step index fiber

  • M. RekasEmail author
  • O. Schmidt
  • H. Zimer
  • T. Schreiber
  • R. Eberhardt
  • A. Tünnermann
Article

Abstract

A high-power tunable Raman Amplifier is presented. The seed signal (varying from 1118 nm to 1130 nm in wavelength) was generated in a tunable Raman oscillator and fed into the Raman amplification stage. A conversion efficiency of up to 86 % was achieved and a maximum output power of over 200 W was measured. The Raman gain coefficient for the amplifier fiber was measured to be 0.76×10−14 m/W. Furthermore, the measured output power was compared with values obtained from simple mathematical model and a good agreement up to the highest output power of amplified signal was achieved.

Keywords

Output Power Stimulate Raman Scattering Raman Gain Splice Loss Raman Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank European Commission for financial support of this work within project “LIFT” under grant agreement no. NMP2-LA-2009-228587.

References

  1. 1.
    A. Tuennermann, T. Schreiber, F. Roeser, A. Liem, S. Hoefer, H. Zellmer, S. Nolte, J. Limpert, J. Phys. B, At. Mol. Opt. Phys. 38, S681 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    J. Limpert, F. Roeser, S. Klingebiel, T. Schreiber, Ch. Wirth, T. Peschel, R. Eberhardt, A. Tuennermann, IEEE J. Sel. Topics Quantum Electron. 13, 537 (2007) CrossRefGoogle Scholar
  3. 3.
    D.J. Richardson, J. Nilsson, W.A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010) CrossRefGoogle Scholar
  4. 4.
    M.L. Osowski, W. Hu, R.M. Lammert, S.W. Oh, P.T. Rudy, T. Stakelon, L. Vaissie, J.E. Ungar, Proc. SPIE 6952, 695208 (2008) CrossRefGoogle Scholar
  5. 5.
    E. Snitzer, H. Po, R. Tumminelli, F. Hakimi, U.S. Patent 4,815,079, 1989 Google Scholar
  6. 6.
    L. Zenteno, J. Lightwave Technol. 11, 1435 (1993) ADSCrossRefGoogle Scholar
  7. 7.
    M. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. Walton, L. Zenteno, J. Lightwave Technol. 27, 3010 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    C.B. Olausson, A. Shirakawa, M. Chen, J.K. Lyngsø, J. Broeng, K.P. Hansen, A. Bjarklev, K. Ueda, Opt. Express 18, 16345 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    M. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, J. Maran, Proc. SPIE 7195, 71951U (2009) CrossRefGoogle Scholar
  10. 10.
    R.H. Stolen, E.P. Ippen, Appl. Phys. Lett. 22, 276 (1973) ADSCrossRefGoogle Scholar
  11. 11.
    V.E. Perlin, H.G. Winful, J. Lightwave Technol. 20, 250 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    D. Georgiev, V.P. Gapontsev, A.G. Dronov, M.Y. Vyatkin, A.B. Rulkov, S.V. Popov, J.R. Taylor, Opt. Express 13, 6772 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Feng, L.R. Taylor, D.B. Calia, Opt. Express 17, 23678 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    Y. Feng, L.R. Taylor, D.B. Calia, R. Holzloener, W. Hackenberg, in Frontiers in Optics (FiO) Postdeadline Papers I (PDPA) (2009) Google Scholar
  15. 15.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007) Google Scholar
  16. 16.
    M.N. Islam (ed.), Raman Amplifiers for Telecommunications 1, Physical Principles (Springer, Berlin, 2004) Google Scholar
  17. 17.
    R.G. Smith, Appl. Opt. 11, 2489 (1972) ADSCrossRefGoogle Scholar
  18. 18.
    R.H. Stolen, in Technical Digest Symposium on Optical Fiber Measurements 2000 (NIST Special Publications 953, September 2000) Google Scholar
  19. 19.
    Y. Kang, Calculations and measurements of Raman gain coefficients of different fiber types. Master Thesis, The Faculty of the Virginia Polytechnic Institute and State University Blacksburg, Virginia, 2002 Google Scholar
  20. 20.
    V. Ramaswamy, R. Standley, D. Sze, W.G. French, Bell Syst. Tech. J. 57, 635 (1978) Google Scholar
  21. 21.
    K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, Electron. Lett. 16, 768 (1980) CrossRefGoogle Scholar
  22. 22.
    G.D. VanWiggeren, Rajarshi Roy, Appl. Opt. 38, 3888 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    M.N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002) CrossRefGoogle Scholar
  24. 24.
    R.H. Stolen, IEEE J. Quantum Electron. 15, 1157 (1979) ADSCrossRefGoogle Scholar
  25. 25.
    S. Popov, S. Sergeyev, A.T. Friberg, J. Opt. A, Pure Appl. Opt. 6, S72 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. Rekas
    • 1
    • 2
    Email author
  • O. Schmidt
    • 1
  • H. Zimer
    • 3
  • T. Schreiber
    • 1
  • R. Eberhardt
    • 1
  • A. Tünnermann
    • 1
    • 2
  1. 1.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany
  2. 2.Institute of Applied Physics and Abbe School of Photonics, Faculty for Physics and AstronomyFriedrich Schiller UniversityJenaGermany
  3. 3.JT Optical Engine GmbH + Co. KGJenaGermany

Personalised recommendations