Applied Physics B

, Volume 107, Issue 4, pp 1125–1130 | Cite as

Spatially-resolved potential measurement with ion crystals



We present a method to measure potentials over an extended region using one-dimensional ion crystals in a radio frequency (RF) ion trap. The equilibrium spacings of the ions within the crystal allow the calculation of the external forces acting at each point. From this the overall potential is computed, and even potentials due to specific trap features can be determined. The method can be used to probe potentials near proximal objects in real time, and can be generalised to higher dimensions.


Radio Frequency Trap Surface Position Uncertainty Radial Confinement Trap Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge that the ion trap used is courtesy of the group of I.L. Chuang, MIT. We also acknowledge support from the Austrian Science Fund (FWF), the EU network SCALA, the EU STREP project MICROTRAP and the Institut für Quanteninformation GmbH.


  1. 1.
    Army Research Office (USA): ARDA quantum information science and technology roadmap (2004),
  2. 2.
    H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M.W. Forbes, M. Sharifi, T. Croley, Z. Lausevic, R.E. March, J. Mass Spectrom. 34, 1219 (1999) CrossRefGoogle Scholar
  4. 4.
    B. Brkić, S. Taylor, J.F. Ralph, N. France, Phys. Rev. A 73, 012326 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    J. Home, A.M. Steane, Quantum Inf. Comput. 6, 289 (2006) MATHGoogle Scholar
  6. 6.
    J.P. Home, D. Hanneke, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Science 325, 1227 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    W.K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, C. Monroe, Appl. Phys. Lett. 88, 034101 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, W. Hänsel, New J. Phys. 11, 103008 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    M. Harlander, R. Lechner, M. Brownnutt, R. Blatt, W. Hänsel, Nature 471, 200 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    P. Schindler, J.T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, R. Blatt, Science 332, 1059 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, St. Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13, 013032 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    D.T.C. Allcock, L. Guidoni, T.P. Harty, C.J. Ballance, M.G. Blain, A.M. Steane, D.M. Lucas, 1110.1486 [quant-ph] (2011)
  13. 13.
    M. Harlander, M. Brownnutt, W. Hänsel, R. Blatt, New J. Phys. 12, 093035 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    S.X. Wang, G.H. Low, N.S. Lachenmyer, Y. Ge, P.F. Herskind, I.L. Chuang, 1108.0092 [quant-ph] (2011)
  15. 15.
    D.T.C. Allcock, T.P. Harty, H.A. Janacek, N.M. Linke, C.J. Ballance, A.M. Steane, D.M. Lucas, R.L. Jarecki Jr., S.D. Habermehl, M.G. Blain, D. Stick, D.L. Moehring, 1105.4864 [quant-ph] (2011)
  16. 16.
    L. Deslauriers, P.C. Haljan, P.J. Lee, K.-A. Brickman, B.B. Blinov, M.J. Madsen, C. Monroe, Phys. Rev. A 70, 043408 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Biercuk, H. Uys, J.W. Britton, A.P. VanDevender, J.J. Bollinger, Nat. Nanotechnol. 5, 646 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    J.F. Eble, S. Ulm, P. Zahariev, F. Schmidt-Kaler, K. Singer, J. Opt. Soc. Am. B 27, A99 (2010) CrossRefGoogle Scholar
  20. 20.
    G. Huber, F. Ziesel, U. Poschinger, K. Singer, F. Schmidt-Kaler, Appl. Phys. B 100, 725 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    R. Maiwald, D. Leibfried, J. Britton, J.C. Bergquist, G. Leuchs, D.J. Wineland, Nat. Phys. 5, 551 (2009) CrossRefGoogle Scholar
  22. 22.
    S. Schulz, U. Poschinger, K. Singer, F. Schmidt-Kaler, Fortschr. Phys. 54, 648 (2006) CrossRefGoogle Scholar
  23. 23.
    M. Block, A. Drakoudis, H. Leuthner, P. Seibert, G. Werth, J. Phys. B 33, L375 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    I.M. Buluta, S. Hasegawa, J. Phys. B 42, 154004 (2009) ADSGoogle Scholar
  25. 25.
    L. Hornekær, M. Drewsen, Phys. Rev. A 66, 013412 (2002) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. Brownnutt
    • 1
  • M. Harlander
    • 1
  • W. Hänsel
    • 1
    • 2
    • 3
  • R. Blatt
    • 1
    • 2
  1. 1.Institut für ExperimentalphysikUniversität InnsbruckInnsbruckAustria
  2. 2.Institut für Quantenoptik und Quanteninformationder Österreichischen Akademie der WissenschaftenInnsbruckAustria
  3. 3.Menlo Systems GmbHMartinsriedGermany

Personalised recommendations