Applied Physics B

, Volume 107, Issue 2, pp 263–274 | Cite as

Impact of dispersion on pulse dynamics in chirped-pulse fiber lasers

  • M. Baumgartl
  • B. Ortaç
  • J. Limpert
  • A. Tünnermann
Article

Abstract

We report on a systematic study of an environmentally stable mode-locked Yb-doped fiber laser operating in the chirped-pulse regime. The linear cavity chirped-pulse fiber laser is constructed with a saturable absorber mirror as nonlinear mode-locking mechanism and a nonlinearity-free transmission-grating-based stretcher/compressor for dispersion management. Mode-locked operation and pulse dynamics from strong normal to strong anomalous total cavity dispersion in the range of +2.5 to −1.6 ps2 is experimentally studied. Strongly positively chirped pulses from 4.3 ps (0.01 ps2) to 39 ps (2.5 ps2) are obtained at normal net-cavity dispersion. In the anomalous dispersion regime, the laser generates average soliton feature negatively chirped pulses with autocorrelation pulse durations from 0.8 ps (−0.07 ps2) to 3.9 ps (−1.6 ps2). The lowered peak power due to the pulse stretching allows one to increase the double pulse threshold. Based on the numerical simulation, different regimes of mode locking are obtained by varying the intra-cavity dispersion, and the characteristics of average soliton, stretched-pulse, wave-breaking-free and chirped-pulse regimes are discussed.

References

  1. 1.
    J.W. Nicholson, M. Andrejco, Opt. Express 14, 8160 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, A. Tünnermann Opt. Express 15, 15595 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    I.N. Duling III, Opt. Lett. 16, 539 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    K. Tamura, L.E. Nelson, H.A. Haus, E.P. Ippen, Appl. Phys. Lett. 64, 149 (1994) ADSCrossRefGoogle Scholar
  5. 5.
    H.A. Haus, K. Tamura, L.E. Nelson, E.P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    L.E. Nelson, S.B. Fleischer, G. Lenz, E.P. Ippen, Opt. Lett. 21, 1759 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    F.Ö. Ilday, J.R. Buckley, H. Lim, F.W. Wise, W.G. Clark, Opt. Lett. 28, 1365 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    R. Herda, O.G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    A. Chong, W.H. Renninger, F.W. Wise, J. Opt. Soc. Am. B 25, 140 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    L.M. Zhao, D.Y. Tang, J. Wu, Opt. Lett. 31, 1788 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    A. Chong, W. Renninger, F. Wise, Opt. Lett. 32, 2408 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    M. Baumgartl, B. Ortaç, C. Lecaplain, A. Hideur, J. Limpert, A. Tünnermann, Opt. Lett. 35, 2311 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    B. Ortaç, M. Baumgartl, J. Limpert, A. Tünnermann, Opt. Lett. 34, 1585 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    C. Lecaplain, B. Ortaç, G. Machinet, J. Boullet, M. Baumgartl, T. Schreiber, E. Cormier, A. Hideur, Opt. Lett. 35, 3156 (2010) CrossRefGoogle Scholar
  15. 15.
    M. Baumgartl, F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, A. Tünnermann, Opt. Lett. 36, 244 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    W.H. Renninger, A. Chong, F.W. Wise, Opt. Lett. 33, 3025 (2008) CrossRefGoogle Scholar
  17. 17.
    D.-F. Liu, X.-J. Zhu, C.-H. Wang, J.-J. Yu, E.-X. Fang, J.-J. Wang, Laser Phys. 21, 414 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    B. Ortaç, M. Plötner, J. Limpert, A. Tünnermann, Opt. Express 15, 16794 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    S.M.J. Kelly, Electron. Lett. 28, 806 (1992) CrossRefGoogle Scholar
  20. 20.
    M.L. Dennis, I.N. Duling III, IEEE J. Quantum Electron. 30, 1469 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    C. Lecaplain, M. Baumgartl, T. Schreiber, A. Hideur, Opt. Express 19, 26742 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. Baumgartl
    • 1
    • 2
  • B. Ortaç
    • 3
  • J. Limpert
    • 1
    • 2
  • A. Tünnermann
    • 1
    • 2
    • 4
  1. 1.Institute of Applied PhysicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Helmholtz-Institute JenaJenaGermany
  3. 3.UNAM-Institute of Materials Science and NanotechnologyBilkent UniversityBilkent, AnkaraTurkey
  4. 4.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations