Advertisement

Applied Physics B

, Volume 107, Issue 3, pp 551–559 | Cite as

On the quantification of OH*, CH*, and C2* chemiluminescence in flames

  • P. Nau
  • J. Krüger
  • A. Lackner
  • M. Letzgus
  • A. BrockhinkeEmail author
Article

Abstract

Absolute concentrations of all important chemiluminescent species, OH–A, CH–A, CH–B, and C2-d have been measured for the first time in methane-oxygen flames at low pressure. The optical detection system for chemiluminescence measurements has been calibrated with Rayleigh and Raman scattering of a cw laser, with the latter approach yielding superior results.

The measured ratio between the concentration of CH–B and CH–A suggests that the electronically excited CH* is formed close to thermal equilibrium. Introduction of different rate constants for reactions leading to CH–A and CH–B were not necessary to explain the experimental results. Results are compared with a recent numerical model. Deviations in profile shape and peak positions are relatively small for stoichiometric flames, but become more pronounced in richer mixtures. Larger discrepancies are observed for the absolute concentrations, depending on the chemiluminescent species and the stoichiometry.

In an attempt to find an alternative method for the quantification of chemiluminescent species, MIR-CRDS has been performed around 3.9 μm. While H2O and OH–X could be measured, the sensitivity was not high enough to detect the low sub-ppb concentration of OH–A—in part due to the limited reflectivity of mirrors in the MIR, in part due to a significant background of hot H2O lines.

Keywords

Burner Surface Excited State Concentration Chemiluminescence Intensity Methane Flame Electronic Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Prof. Dr. Katharina Kohse-Höinghaus for generous support and discussions. We thank Dr. Trupti Kathrotia (DLR Stuttgart) for discussions on the reaction kinetics mechanism of chemiluminescent species. Deutsche Forschungsgemeinschaft (DFG) has funded this work under contracts KO 1363/21-2, PAK 116/1, and 116/2 and SFB 686 TP C5.

References

  1. 1.
    S. Candel, Proc. Combust. Inst. 29, 1 (2002) –28 CrossRefGoogle Scholar
  2. 2.
    F. Biagioli, F. Güthe, B. Schuermans, Exp. Therm. Fluid Sci. 32, 1344 (2008) –1353 CrossRefGoogle Scholar
  3. 3.
    Y. Hardalupas, M. Orain, C. Panoutsos, A. Taylor, J. Olofsson, H. Seyfried, M. Richter, M.A.J. Hult, F. Hermann, J. Klingmann, Appl. Therm. Eng. 24, 1619 (2004) –1632 CrossRefGoogle Scholar
  4. 4.
    P. Gopalakrishnan, M. Bobba, J. Seitzman, Proc. Combust. Inst. 31, 3401 (2007) –3408 CrossRefGoogle Scholar
  5. 5.
    J. Kojima, Y. Ikeda, T. Nakajima, Combust. Flame 140, 34 (2005) CrossRefGoogle Scholar
  6. 6.
    K. Kohse-Höinghaus, A. Brockhinke, Combust. Explos. Shock Waves 45, 349 (2009) CrossRefGoogle Scholar
  7. 7.
    F. Guethe, D. Guyot, G. Singla, N. Noiray, B. Schuermans, Appl. Phys. B (2012, in press) Google Scholar
  8. 8.
    A.G. Gaydon, The Spectroscopy of Flames (Wiley, New York, 1974) CrossRefGoogle Scholar
  9. 9.
    A. Brockhinke, J. Krüger, M. Heusing, M. Letzgus, Appl. Phys. B (2012, in print) Google Scholar
  10. 10.
    G. Smith, C. Park, J. Luque, Combust. Flame 140, 385 (2005) CrossRefGoogle Scholar
  11. 11.
    J. de Vries, J. Hall, S. Simmons, M. Rickard, D. Kalitan, E. Petersen, Combust. Flame 150, 137 (2007) CrossRefGoogle Scholar
  12. 12.
    E. Petersen, M. Kopp, N. Donato, F. Güthe, Chemiluminescence kinetics models at engine conditions, in Proceedings of ASME Turbo Expo 2011 GT2011, June 6–10, 2011, Vancouver, British Columbia, Canada, 2011 Google Scholar
  13. 13.
    M. Bozkurt, M. Fikri, C. Schulz, Appl. Phys. B (2012, in press) Google Scholar
  14. 14.
    K.T. Walsh, M.B. Long, M.A. Tanoff, M.D. Smooke, Proc. Combust. Inst. 27, 615 (1998) Google Scholar
  15. 15.
    G.P. Smith, J. Luque, C. Park, J.B. Jeffries, D.R. Crosley, Combust. Flame 131, 59 (2002) CrossRefGoogle Scholar
  16. 16.
    K. Kohse-Höinghaus, R. Heidenreich, T. Just, Proc. Combust. Inst. 20, 1177 (1984) Google Scholar
  17. 17.
    W.K. Bischel, D.J. Bamford, L.E. Jusinski, Appl. Opt. 25(7), 1215 (1986) ADSCrossRefGoogle Scholar
  18. 18.
    J. Luque, D.R. Crosley, Appl. Phys. B, Lasers Opt. 63, 91 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    M. De Leo, A. Saveliev, L.A. Kennedy, S.A. Zelepouga, Combust. Flame 149(4), 435 (2007) CrossRefGoogle Scholar
  20. 20.
    H.W. Schrötter, H.W. Klöckner, “Raman scattering cross sections in gases and liquids” in Raman Spectroscopy of Gases and Liquids (Springer, New York, 1979) Google Scholar
  21. 21.
    M.J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, 2003) Google Scholar
  22. 22.
    G.R. Alms, A. Burnham, W.H. Flygare, J. Chem. Phys. 63(8), 3321 (1975) ADSCrossRefGoogle Scholar
  23. 23.
    D.R. Bates, Planet. Space Sci. 32(6), 785 (1984) ADSCrossRefGoogle Scholar
  24. 24.
    C.M. Penney, J. Opt. Soc. Am. 59(1), 34 (1969) ADSCrossRefGoogle Scholar
  25. 25.
    C.M. Penney, R.L.S. Peters, M. Lapp, J. Opt. Soc. Am. 64(5), 712 (1974) ADSCrossRefGoogle Scholar
  26. 26.
    M. Köhler, Systematische Brennstoffuntersuchung mittels quasi-simultaner CRD- und LIF-Spektroskopie, Ph.D. thesis, Universität Bielefeld (2008) Google Scholar
  27. 27.
    D.R. Crosley, K.J. Rensberger, R.A. Copeland, State selectivity in light emission from flames in selectivity in chemical reactions (1988) Google Scholar
  28. 28.
    N.L. Garland, D.R. Crosley, Appl. Opt. 24(23), 4229 (1985) ADSCrossRefGoogle Scholar
  29. 29.
    T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, A. Brockhinke, Appl. Phys. B (2012, in print) Google Scholar
  30. 30.
    T. Kathrotia, Reaction Kinetics Modeling of OH*, CH*, and C2* Chemiluminescence, Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2011) Google Scholar
  31. 31.
    M. Tamura, P. Berg, J. Harrington, J. Luque, J. Jeffries, G. Smith, D. Crosley, Combust. Flame 114, 502 (1998) CrossRefGoogle Scholar
  32. 32.
    A. Brockhinke, M. Letzgus, S. Rinne, K. Kohse-Höinghaus, J. Phys. Chem. A 110, 3028 (2006) Google Scholar
  33. 33.
    J. Scherer, D. Voelkel, D. Rakestraw, Appl. Phys. B 64(6), 699 (1997) ADSCrossRefGoogle Scholar
  34. 34.
    J.J. Scherer, K.W. Aniolek, N.P. Cernansky, D.J. Rakestraw, J. Chem. Phys. 107(16), 6196 (1997) ADSCrossRefGoogle Scholar
  35. 35.
  36. 36.
    M. Letzgus, A. Brockhinke, K. Kohse-Höinghaus, LASKINv2. http://pc1.uni-bielefeld.de/~laskin

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • P. Nau
    • 1
  • J. Krüger
    • 1
  • A. Lackner
    • 1
  • M. Letzgus
    • 1
  • A. Brockhinke
    • 1
    Email author
  1. 1.Physikalische Chemie 1Universität BielefeldBielefeldGermany

Personalised recommendations