Applied Physics B

, Volume 107, Issue 3, pp 591–602 | Cite as

Tomographic reconstruction of 2D-OH-chemiluminescence distributions in turbulent diffusion flames

Article

Abstract

A recently developed fast tomographic reconstruction device (Anikin et al. in Appl. Phys. B 100:675, 2010) has been applied to detect 2-D chemiluminescence distributions of OH in reaction zones of a near laminar and a turbulent diffusion flame. A series of single-shot experiments has been carried out in both flames offering cold gas flow velocities of 0.43 m/s and 4 m/s and flame diameters up to 60 mm, respectively.

The emission of OH-chemiluminescence originating from the reaction zones of the flame fronts was registered by ten Kepler-telescopes surrounding the object under investigation at different pre-defined angles. The signals emerging from each telescope are collected by a fiber cable consisting of 90 single fibers arranged side by side in a single row, respectively. The signals originating from the ten cables/10×90=900 fibers represent the corresponding Radon transforms. These signals are imaged by a relay-optics onto the photocathode of a single image intensified CCD-camera. The output data of the camera are used for the reconstructions of the 2D-distributions of OH-emission using a numerical procedure solving the inverse problem of tomography (Anikin et al. in Appl. Phys. B 100:675, 2010, and references therein). From the experimental results it is shown that the reconstructions obtained at exposure times down to 200 μs reproduce fine structures of the flames with a spatial resolution of ∼1 mm. Therefore, the method is a useful tool for the detailed investigation of turbulent combustion.

Notes

Acknowledgements

The authors gratefully acknowledge Deutsche Forschungsgemeinschaft DFG (Paket-Forschungsantrag: “Chemilumineszenz und Wärmefreisetzung”) for its financial support.

References

  1. 1.
    N. Anikin, R. Suntz, H. Bockhorn, Appl. Phys. B 100, 675 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    A.G. Gaydon, The Spectroscopy of Flames (Chapman and Hall, London, 1974) CrossRefGoogle Scholar
  3. 3.
    T. Clark, D. Bittker, National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory Cleveland, Ohio, RM E54F29 (1954) Google Scholar
  4. 4.
    T. Clark, NACA Technical Note 4266, National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory Cleveland, Ohio, RM E54F29 (1958) Google Scholar
  5. 5.
    Y. Hardalupas, M. Orain, Combust. Flame 139, 188 (2004) CrossRefGoogle Scholar
  6. 6.
    N. Docquier, S. Candel, Prog. Energy Combust. Sci. 28, 107 (2002) CrossRefGoogle Scholar
  7. 7.
    S. Candel, Proc. Combust. Inst. 29, 1 (2002) CrossRefGoogle Scholar
  8. 8.
    B. Higgins, M.Q. McQuay, F. Lacas, S. Candel, Fuel 80, 1583 (2001) CrossRefGoogle Scholar
  9. 9.
    T. Chou, D.J. Patterson, Combust. Flame 101, 45 (1995) CrossRefGoogle Scholar
  10. 10.
    I. Hurle, R. Price, T. Sugden, A. Thomas, Proc. R. Soc. 303, 409 (1968) ADSCrossRefGoogle Scholar
  11. 11.
    R. Balachandran, B.O. Ayoola, C.F. Kaminski, A.P. Dowling, E. Mastorakos, Combust. Flame 143, 37 (2005) CrossRefGoogle Scholar
  12. 12.
    B.O. Ayoola, R. Balachandran, J.H. Frank, E. Mastorakos, C.F. Kaminski, Combust. Flame 144, 1 (2006) CrossRefGoogle Scholar
  13. 13.
    P. Karaunen, S. Andersson-Engles, S. Svanberg, Appl. Phys. B 53, 260 (1991) ADSCrossRefGoogle Scholar
  14. 14.
    F. Akamatsu, T. Wakabayashi, S. Tsushima, M. Katsuki, Y. Mizutani, Y. Ikeda, N. Kawahara, T. Nakajima, Meas. Sci. Technol. 10, 1240 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    J. Kojima, Y. Ikeda, T. Nakajima, Proc. Combust. Inst. 28, 1757 (2000) CrossRefGoogle Scholar
  16. 16.
    Y. Ikeda, J. Kojima, T. Nakajima, F. Akamatsu, M. Katsuki, Proc. Combust. Inst. 28, 343 (2000) CrossRefGoogle Scholar
  17. 17.
    Y. Ikeda, J. Kojima, H. Hashimoto, Proc. Combust. Inst. 29, 1495 (2002) CrossRefGoogle Scholar
  18. 18.
    J. Kojima, Y. Ikeda, T. Nakajima, Meas. Sci. Technol. 14, 1714 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    P.G. Aleiferis, Y. Hardalupas, A.M.K.P. Taylor, K. Ishii, Y. Urata, Combust. Flame 136, 72 (2004) CrossRefGoogle Scholar
  20. 20.
    Y. Hardalupas, M. Orain, C.S. Panoutsos, Appl. Therm. Eng. 24, 1619 (2004) CrossRefGoogle Scholar
  21. 21.
    M. Orain, Y. Hardalupas, C. R., Méc. 338, 241 (2010) Google Scholar
  22. 22.
    C.J. Dasch, Appl. Opt. 31, 1146 (1992) ADSCrossRefGoogle Scholar
  23. 23.
    J. Hentschel, R. Suntz, H. Bockhorn, Appl. Opt. 44, 6673 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    G. Herding, R. Snyder, C. Rolon, S. Candel, J. Propuls. Power 13, 146 (1998) CrossRefGoogle Scholar
  25. 25.
    D. Kendrick, G. Herding, P. Scouflaire, J.C. Rolon, S. Candel, Combust. Flame 118, 327 (1999) CrossRefGoogle Scholar
  26. 26.
    M. Juniper, A. Tripathi, P. Scouflaire, J.C. Rolon, S. Candel, Proc. Combust. Inst. 28, 1103 (2000) CrossRefGoogle Scholar
  27. 27.
    G. Singla, P. Scouflaire, C. Rolon, S. Candel, Proc. Combust. Inst. 30, 2921 (2005) CrossRefGoogle Scholar
  28. 28.
    J. Radon, Verh. Sächs. Akad. Wiss. Leipz., Math.-Nat. Kl. 69, 262 (1917) Google Scholar
  29. 29.
    J. Floyd, A.M. Kempf, Proc. Combust. Inst. 33, 751 (2011) CrossRefGoogle Scholar
  30. 30.
    H.M. Hertz, G.W. Faris, Opt. Lett. 13, 351 (1988) ADSCrossRefGoogle Scholar
  31. 31.
    Y. Ishino, N. Ohiwa, JSME Int. J. Ser. B Fluids Therm. Eng. 48, 34 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    J. Floyd, P. Geipel, A.M. Kempf, Combust. Flame 158, 376 (2011) CrossRefGoogle Scholar
  33. 33.
    A.N. Tikhonov, V.A. Arsenin, Solution of Ill-posed Problems (Winston, Washington, 1977), p. 258 Google Scholar
  34. 34.
    H. Phylaktou, G.E. Andrews, Symp., Int., Combust. 25, 103 (1994) CrossRefGoogle Scholar
  35. 35.
    D.D. Agrawal, Combust. Flame 42, 243 (1981) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut für Technische Chemie und PolymerchemieKarlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Engler–Bunte–Institut, Bereich VerbrennungstechnikKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations