Applied Physics B

, Volume 107, Issue 3, pp 571–584 | Cite as

Experimental and numerical study of chemiluminescent species in low-pressure flames

  • T. Kathrotia
  • U. Riedel
  • A. Seipel
  • K. Moshammer
  • A. Brockhinke
Article

Abstract

Chemiluminescence has been observed since the beginning of spectroscopy, nevertheless, important facts still remain unknown. Especially, reaction pathways leading to chemiluminescent species such as OH, CH, \(\mathrm{C}_{2}^{*}\), and \(\mathrm{CO}_{2}^{*}\) are still under debate and cannot be modeled with standard codes for flame simulation. In several cases, even the source species of spectral features observed in flames are unknown. In recent years, there has been renewed interest in chemiluminescence, since it has been shown that this radiation can be used to determine flame parameters such as stoichiometry and heat release under some conditions.

In this work, we present a reaction mechanism which predicts the OH, CH (in A- and B-state), and \(\mathrm{C}_{2}^{*}\) emission strength in lean to fuel-rich stoichiometries. Measurements have been performed in a set of low-pressure flames which have already been well characterized by other methods. The flame front is resolved in these measurements, which allows a comparison of shape and position of the observed chemiluminescence with the respective simulated concentrations. To study the effects of varying fuels, methane flame diluted in hydrogen are measured as well. The 14 investigated premixed methane–oxygen–argon and methane–hydrogen–oxygen–argon flames span a wide parameter field of fuel stoichiometry (ϕ=0.5 to 1.6) and hydrogen content (H2 vol%=0 to 50).

The relative comparison of measured and simulated excited species concentrations shows good agreement. The detailed and reliable modeling for several chemiluminescent species permits correlating heat release with all of these emissions under a large set of flame conditions. It appears from the present study that the normally used product of formaldehyde and OH concentration may be less well suited for such a prediction in the flames under investigation.

References

  1. 1.
    D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, Th. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker, J. Warnatz, J. Phys. Chem. Ref. Data 34, 757 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    F. Biagioli, F. Göthe, B. Schuermans, Exp. Therm. Fluid Sci. 32, 1344 (2008) CrossRefGoogle Scholar
  3. 3.
    M. Bozkurt, M. Fikri, C. Schulz, Appl. Phys. B, Lasers Opt., (2012, in press) Google Scholar
  4. 4.
    A. Brockhinke, M. Letzgus, S. Rinne, K. Kohse-Höinghaus, J. Phys. Chem. A 110, 3028 (2006) Google Scholar
  5. 5.
    S. Candel, Proc. Combust. Inst. 29, 1 (2002) CrossRefGoogle Scholar
  6. 6.
    C. Chen, Y. Sheng, S. Yu, X. Ma, J. Chem. Phys. 101, 5727 (1994) ADSCrossRefGoogle Scholar
  7. 7.
    J. Cooper, J. Whitehead, J. Chem. Soc. Faraday Trans. 88, 2323 (1992) CrossRefGoogle Scholar
  8. 8.
    J. Cooper, J. Whitehead, J. Phys. Chem. 98, 8274 (1994) CrossRefGoogle Scholar
  9. 9.
    D.R. Crosley, K.J. Rensberger, R.A. Copeland, in Selectivity in Chemical Reactions, ed. by J.C. Whitehead (Kluwer, Dordrecht, 1988), p. 543 Google Scholar
  10. 10.
    A.G. Gaydon, The Spectroscopy of Flames (Wiley, New York, 1974) CrossRefGoogle Scholar
  11. 11.
    E. Goos, A. Burcat, B. Ruscic, New NASA thermodynamic polynomials database with active thermochemical tables updates, Report ANL 05/20 TAE 960 (2011) Google Scholar
  12. 12.
    P. Gopalakrishnan, M.K. Bobba, J.M. Seitzman, Proc. Combust. Inst. 31, 3401 (2007) CrossRefGoogle Scholar
  13. 13.
    L. Haber, U. Vandsburger, Combust. Sci. Technol. 175, 2003 (1859) Google Scholar
  14. 14.
    J. Hall, E. Petersen, Int. J. Chem. Kinet. 38, 714 (2006) CrossRefGoogle Scholar
  15. 15.
    J. Hall, J. Vries, A. Amadio, E. Petersen, in Aerospace Sciences Meeting and Exhibit, vol. 43 (2005). AIAA 2005-1318 Google Scholar
  16. 16.
    C. Hand, G. Kistiakowsky, J. Chem. Phys. 37, 1239 (1962) ADSCrossRefGoogle Scholar
  17. 17.
    Y. Hardalupas, M. Orain, C.S. Panoutsos, A.M.K.P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, J. Klingmann, Appl. Therm. Eng. 24, 1619 (2004) CrossRefGoogle Scholar
  18. 18.
    T. Kathrotia, Ph.D. Thesis, Universität Heidelberg (2011). Available online: http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2011/12027/
  19. 19.
    T. Kathrotia, U. Riedel, J. Warnatz, in 4th European Combustion Meeting. (2009). Paper 2 Google Scholar
  20. 20.
    T. Kathrotia, M. Fikri, M. Bozkurt, M. Hartmann, U. Riedel, C. Schulz, Combust. Flame 157, 1261 (2010) CrossRefGoogle Scholar
  21. 21.
    M. Köhler, A. Brockhinke, M. Braun-Unkhoff, K. Kohse-Höinghaus, J. Phys. Chem. A 114, 4719 (2010) CrossRefGoogle Scholar
  22. 22.
    K. Kohse-Höinghaus, A. Brockhinke, Combust. Explos. Shock Waves 45, 349 (2009) CrossRefGoogle Scholar
  23. 23.
    J. Kojima, Y. Ikeda, T. Nakajima, Proc. Combust. Inst. 28, 1757 (2000) CrossRefGoogle Scholar
  24. 24.
    J. Kojima, Y. Ikeda, T. Nakajima, Combust. Flame 140, 34 (2005) CrossRefGoogle Scholar
  25. 25.
    S. Krishnamachari, H. Broida, J. Chem. Phys. 34, 1709 (1961) ADSCrossRefGoogle Scholar
  26. 26.
    J. Luque, D.R. Crosley, LIFBASE (version 2.0.6), Report MP 99-009, SRI International, Menlo Park, CA (1999) Google Scholar
  27. 27.
    U. Maas, Appl. Math. 40, 249 (1995) MathSciNetMATHGoogle Scholar
  28. 28.
    U. Maas, J. Warnatz, Combust. Flame 74, 53 (1988) CrossRefGoogle Scholar
  29. 29.
    A. McIlroy, Chem. Phys. Lett. 296, 151 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    J. Miller, C. Melius, Combust. Flame 91, 21 (1992) CrossRefGoogle Scholar
  31. 31.
    H. Najm, P. Paul, C. Mueller, P. Wyckoff, Combust. Flame 113, 312 (1998) CrossRefGoogle Scholar
  32. 32.
    P. Nau, J. Krüger, A. Lackner, M. Letzgus, A. Brockhinke, Appl. Phys. B, Lasers Opt., (2012, in press) Google Scholar
  33. 33.
    V. Nori, J. Seitzman, Proc. Combust. Inst. 32, 895 (2009) CrossRefGoogle Scholar
  34. 34.
    C. Panoutsos, Y. Hardalupas, A.M.K.P. Taylor, Combust. Flame 156, 273 (2009) CrossRefGoogle Scholar
  35. 35.
    P.H. Paul, J.L. Durant Jr., J.A. Gray, J. Chem. Phys. 102, 8378 (1955) ADSCrossRefGoogle Scholar
  36. 36.
    K. Rensberger, M. Dyer, R. Copeland, Appl. Opt. 27, 3679 (1988) ADSCrossRefGoogle Scholar
  37. 37.
    G. Richmond, M.L. Costen, K.G. McKendrick, J. Phys. Chem. A 109, 542 (2005) CrossRefGoogle Scholar
  38. 38.
    M. Savadatti, H. Broida, J. Chem. Phys. 45, 2390 (1966) ADSCrossRefGoogle Scholar
  39. 39.
    K. Schofield, M. Steinberg, J. Phys. Chem. A 111, 2098 (2007) CrossRefGoogle Scholar
  40. 40.
    G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowmann, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, GRI-mech 3.0, University of California, Berkeley, CA. (1999) Google Scholar
  41. 41.
    G. Smith, J. Luque, C. Park, J. Jeffries, D. Crosley, Combust. Flame 131, 59 (2002) CrossRefGoogle Scholar
  42. 42.
    G. Smith, C. Park, J. Luque, Combust. Flame 140, 385 (2005) CrossRefGoogle Scholar
  43. 43.
    G. Smith, C. Park, J. Schneiderman, J. Luque, Combust. Flame 141, 66 (2005) CrossRefGoogle Scholar
  44. 44.
    U. Struckmeier, P. Oßwald, T. Kasper, L. Böhling, M. Heusing, M. Köhler, A. Brockhinke, K. Kohse-Höinghaus, Z. Phys. Chem. 223, 503 (2009) CrossRefGoogle Scholar
  45. 45.
    C.A. Taatjes, N. Hansen, D.L. Osborn, K. Kohse-Höinghaus, T.A. Cool, P.R. Westmoreland, Phys. Chem. Chem. Phys. 10, 20 (2008) CrossRefGoogle Scholar
  46. 46.
    M. Tamura, P. Berg, J. Harrington, J. Luque, J. Jeffries, G. Smith, D. Crosley, Combust. Flame 114, 502 (1998) CrossRefGoogle Scholar
  47. 47.
    J.W. Thoman Jr., A.J. McIlroy, Phys. Chem. A 104, 4953 (2000) CrossRefGoogle Scholar
  48. 48.
    T. Turanyi, Comput. Chem. 14, 253 (1990) CrossRefGoogle Scholar
  49. 49.
    C.M. Vagelopoulos, J.H. Frank, Proc. Combust. Inst. 30, 241 (2005) CrossRefGoogle Scholar
  50. 50.
    S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B, Lasers Opt. (2012 in press). doi:10.1007/s00340-012-4953-5
  51. 51.
    B.A. Williams, L. Pasternack, Combust. Flame 111, 87 (1997) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • T. Kathrotia
    • 1
  • U. Riedel
    • 1
  • A. Seipel
    • 2
  • K. Moshammer
    • 2
  • A. Brockhinke
    • 2
  1. 1.University of Stuttgart and Institute of Combustion TechnologyGerman Aerospace Center (DLR)StuttgartGermany
  2. 2.Universität BielefeldBielefeldGermany

Personalised recommendations