Applied Physics B

, Volume 108, Issue 1, pp 125–128

High-power neodymium-doped mixed vanadate bounce geometry laser, mode locked with nonlinear mirror

Article

Abstract

The highest power neodymium-doped mixed vanadate laser oscillator is presented. Using a crystal of Nd:Gd0.6Y0.4VO4 in the bounce geometry, average output powers of 27.5 W in multimode and 23 W in TEM00 operation were achieved. The first nonlinear mirror mode-locked operation of a mixed vanadate laser is also presented, with 16.8 W output power—the highest power mode-locked mixed vanadate oscillator, to the best of our knowledge. Self-starting continuous-wave mode locking was observed at a repetition rate of 100 MHz, pulse duration of 12.7 ps and central wavelength of 1063.8 nm, in TEM00 mode.

References

  1. 1.
    J. Liu, X. Meng, Z. Shao, M. Jiang, B. Ozygus, A. Ding, H. Weber, Appl. Phys. Lett. 83, 1289 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    S.P. Ng, D.Y. Tang, J. Kong, L.J. Qin, X.L. Meng, Z.J. Xiong, Appl. Phys. B 80, 475 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    J. Liu, Y. Wan, W. Han, H. Yang, H. Zhang, J. Wang, Appl. Phys. B 98, 69 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    N. Shiba, Y. Morimoto, K. Furuki, Y. Tanaka, K. Nawata, M. Okida, T. Omatsu, Opt. Express 16, 16382 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    T. Omatsu, M. Okida, A. Minassian, M.J. Damzen, Opt. Express 14, 2727 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    T. Omatsu, A. Minassian, M.J. Damzen, Appl. Phys. B 90, 445 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    A. Minassian, B. Thompson, M.J. Damzen, Appl. Phys. B 76, 341 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    Yu.D. Zavartsev, A.I. Zagumennyi, Yu.L. Kalachev, S.A. Kutovoi, V.A. Mikhailov, A.A. Sirotkin, I.A. Shcherbakov, R. Renner-Erny, W. Lüthy, T. Feurer, Quantum Electron. 37, 315 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    T. Li, S. Zhao, B. Zhao, J. Zhao, Z. Zhuo, K. Yang, J. Opt. Soc. Am. B 26, 2445 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    K.A. Stankov, Appl. Phys. B 45, 191 (1988) ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988) ADSCrossRefGoogle Scholar
  12. 12.
    G.M. Thomas, S.P. Chard, M.J. Damzen, Appl. Phys. B 101, 553 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    H. Iliev, D. Chuchumishev, I. Buchvarov, V. Petrov, Opt. Express 18, 5754 (2010) CrossRefGoogle Scholar
  14. 14.
    J. Saikawa, T. Taira, Jpn. J. Appl. Phys. 42, L649 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I.V. Kityk, F. Rotermund, E. Michalski, M. Ebrahim-Zadeh, Laser Photonics Rev. 4, 53 (2010) CrossRefGoogle Scholar
  16. 16.
    BATOP Optoelectronics (2012), http://www.batop.de/ SAM-1064-13-x-500fs. Accessed February 2012
  17. 17.
    D.J. Farrell, M.J. Damzen, Opt. Express 15, 4781 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    V. Magni, Appl. Opt. 25, 107 (1986) ADSCrossRefGoogle Scholar
  19. 19.
    S. Holmgren, V. Pasiskevicius, F. Laurell, Opt. Express 13, 5270 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, V. Magni, Opt. Lett. 20, 746 (1995) ADSCrossRefGoogle Scholar
  21. 21.
    C. Schaefer, C. Fries, C. Theobald, J.A. L’Huillier, Opt. Lett. 36, 2674 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Photonics, The Blackett LaboratoryImperial College LondonLondonUK
  2. 2.Department of Advanced Integration ScienceChiba UniversityChibaJapan
  3. 3.CREST-JSTSaitamaJapan

Personalised recommendations